LH51BV1000J

CMOS 1M (128K \times 8) Static Ram

FEATURES

• Access time: 70 ns (MAX.)

• Current consumption:

Operating: 30 mA (MAX.) 5 mA (MAX.) (t_{RC} , t_{WC} = 1 μ s) Standby: 60 μ A (MAX.)

• Data Retention:

1.0 μ A (MAX.) (V_{CCDR} = 3 V, T_A = 25°C)

• Single power supply: 2.7 V to 3.6 V

Operating temperature: -25°C to +85°C

• Fully-static operation

• Three-state output

 Not designed or rated as radiation hardened

• Package: 32-pin 6 × 10 mm CSP

N-type bulk silicon

DESCRIPTION

The LH51BV1000JY is a static RAM organized as $131,072 \times 8$ bits which provides low power standby mode. It is fabricated using silicon-gate CMOS process technology.

PIN CONNECTIONS

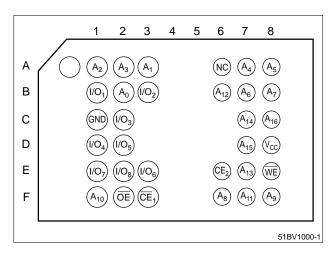


Figure 1. Pin Connections for CSP Package

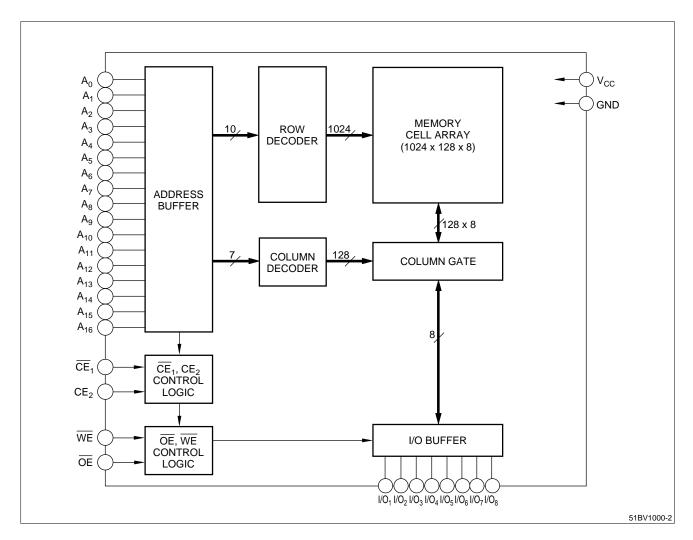


Figure 2. LH51BV1000JY Block Diagram

PIN DESCRIPTION

SIGNAL	PIN NAME
A ₀ – A ₁₆	Address inputs
CE ₁	Chip enable 1
CE ₂	Chip enable 2
WE	Write enable
OE	Output enable

SIGNAL	PIN NAME
I/O ₁ – I/O ₈	Data inputs and outputs
Vcc	Power supply
GND	Ground
NC	No connection

TRUTH TABLE

CE ₁	CE ₂	WE	ŌĒ	MODE	I/O ₁ – I/O ₈	SUPPLY CURRENT
Н	_	_	_	Standby	High impedance	Standby (I _{SB})
	L			Standby	High impedance	Standyby (I _{SB})
L	Н	L	_	Write	Data input	Active (I _{CC})
L	Н	Н	L	Read	Data output	Active (I _{CC})
L	Н	Н	Н	Output disable	High impedance	Active (I _{CC})

NOTE:

1. — = Don't care, L = Low, H = High

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT	NOTE
Supply voltage	Vcc	-0.5 to +4.6	V	1
Input voltage	VIN	-0.5 to $V_{CC} + 0.3$	V	1, 2
Operating temperature	T _{OPR}	−25 to +85	°C	_
Storage temperature	T _{STG}	-65 to +150	°C	_

NOTF:

- 1. The maximum applicable voltage on any pin with respect to GND.
- 2. Undershoot of -3.0 V is allowed width of pulse below 50 ns.

RECOMMENDED OPERATING CONDITIONS ($T_A = -25^{\circ}C$ to $+85^{\circ}C$)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
Supply voltage	Vcc	2.7	3.0	3.6	V	
Input voltage	V _{IH}	2.2	_	V _{CC} + 0.3	V	
input voltage	VIL	-0.3	_	0.4	V	1

NOTE:

DC ELECTRICALCHARACTERISTICS (T_A = -25°C to +85°C, V_{CC} = 2.7 V to 3.6 V)

PARAMETER	SYMBOL	CONDITIONS		MIN.	TYP. ¹	MAX.	UNIT	
Input leakage current	ILI	V _{IN} = 0 V to V _{CC}		-1.0	_	1.0	μΑ	
Output leakage current	ILO	$\overline{CE}_1 = V_{IH} \text{ or } \overline{CE}_2 = V_{IL} \text{ or}$ $\overline{OE} = V_{IH} \text{ or } \overline{WE} = V_{IL}$ $V_{I/O} = 0 \text{ V to } V_{CC}$		-1.0	_	1.0	μΑ	
Operating supply	I _{CC1}	$\overline{CE}_1 = V_{IL}$, $V_{IN} = V_{IL}$ or V_{IH} $CE_2 = V_{IH}$, $I_{I/O} = 0$ mA	t _{CYCLE} = MIN.	_	_	30	mA	
Operating supply current	ICC2	$\overline{CE}_1 = V_{IL}$, $V_{IN} = V_{IL}$ or V_{IH} $CE_2 = V_{IH}$, $I_{I/O} = 0$ mA	t _{CYCLE} = 1.0 μs	_		5	inA	
Standby current	I _{SB}	\overline{CE}_1 , $CE_2 \ge V_{CC} - 0.2 \text{ V or } CE$	₂ ≤ 0.2 V	_	0.6	60	μΑ	
Standby current	I _{SB1}	\overline{CE}_1 , $\overline{CE}_2 \ge V_{CC} - 0.2 \text{ V or } \overline{CE}_2 \le 0.2 \text{ V}$ $\overline{CE}_1 = V_{IH} \text{ or } \overline{CE}_2 = V_{IL}$		_	_	1.0	mA	
	Vai	I_{OL} = 2.0 mA, $V_{CC} \ge 3 \text{ V}$				0.4		
Output voltage	VOL	V_{OL} $I_{OL} = -0.1 \text{ mA}$				0.2	V	
	Voh	$I_{OH} = -2.0 \text{ mA}, \ V_{CC} \ge 3 \text{ V}$		2.4	_	_		
	VOH	$I_{OH} = -0.1 \text{ mA}$	V _{CC} - 0.2					

NOTE:

AC ELECTRICAL CHARACTERISTICS AC Test Conditions

PARAMETER	MODE	NOTE
Input pulse level	0.4 V to 2.4 V	_
Input rise and fall time	5 ns	
Input and output timing ref. level	1.5 V	
Output load	1 TTL + C _L (100 pF)	1

NOTE:

^{1.} Undershoot of -3.0 V is allowed width of pulse below 50 ns.

¹ Typical values at $V_{CC} = 5.0 \text{ V}$, $T_A = 25^{\circ}\text{C}$

^{1.} Including scope and jig capacitance.

READ CYCLE $(T_A = -25^{\circ}C \text{ to } +85^{\circ}C, V_{CC} = 2.7 \text{ V to } 3.6 \text{ V})$

PARAMETER	SYMBOL	MIN.	MAX.	UNIT	NOTE
Read cycle time	trc	70	_	ns	_
Address access time	t _{AA}	_	70	ns	_
CE ₁ access time	t _{ACE1}		70	ns	_
CE ₂ access time	t _{ACE2}		70	ns	_
Output enable to output valid	toE		40	ns	_
Output hold from address change	t _{OH}	10	_	ns	_
CE ₁ Low to output active	t _{LZ1}	5	_	ns	1
CE ₂ High to output active	t _{LZ2}	5	_	ns	1
OE Low to output active	t _{OLZ}	0	_	ns	1
CE ₁ High to output in High impedance	t _{HZ1}		30	ns	1
CE ₂ Low to output in High impedance	t _{HZ2}		30	ns	1
OE High to output in High impedance	t _{OHZ}	_	30	ns	1

NOTE:

WRITE CYCLE ($T_A = -25$ °C to +85°C, $V_{CC} = 2.7$ V to 3.6 V)

PARAMETER	SYMBOL	MIN.	MAX.	UNIT	NOTE
Write cycle time	t _{WC}	70	_	ns	_
Chip enable to end of write	t _{CW}	60		ns	_
Address valid to end of write	t _{AW}	60		ns	_
Address setup time	t _{AS}	0	_	ns	_
Write pulse width	t _{WP}	55		ns	_
Write recovery time	t _{WR}	0		ns	_
Input data setup time	t _{DW}	30		ns	_
Input data hold time	t _{DH}	0		ns	_
WE High to output active	tow	5	_	ns	1
WE Low to output in High impedance	t _{WZ}	_	30	ns	1
OE High to output in High impedance	tonz	_	30	ns	1

NOTE:

1. Active output to High impedance to output active tests specified for a ± 200 mV transition from steady state levels into the test load.

Active output to High impedance to output active tests specified for a ±200 mV transition from steady state levels into the test load.

DATA RETENTION CHARACTERISTICS ($T_A = -25^{\circ}C$ to $+850^{\circ}C$)

PARAMETER	SYMBOL	CONDITIONS		MIN.	TYP. ¹	MAX.	UNIT	NOTES
Data retention supply voltage	V _{CCDR}	$\begin{array}{c} CE_2 \leq 0.2 \ V \ or \\ \overline{CE}_1 \geq V_{CCDR} - 0.2 \ V \end{array}$		2.0	_	3.6	V	2
V _{CCDR} = 3 V	T _A = 25°C	_	0.5	1.0	μΑ	_		
supply current	ata retention Icopp CF ₂ < 0.2 V or	T _A = 40°C	_	_	3.0	_	_	
		OL1 2 VCCDR - 0.2 V			_	50	μΑ	2
Chip enable setup time	tcdr	_		0	_		ms	_
Chip enable hold time	t _R	_		5	_	_	ms	_

NOTES:

- 1. Typical value at $T_A = 25$ °C
- 2. $CE_2 \ge V_{CCDR}$ 0.2 V or $CE_2 \le 0.2$ V

PIN CAPACITANCE ($T_A = 25^{\circ}C$, f = 1 MHz)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE
Input capacitance	C _{IN}	V _{IN} = 0 V	_	_	8	pF	1
I/O capacitance	C _{I/O}	V _{I/O} = 0 V			10	pF	1

NOTE:

1. This parameter is sampled and not production tested.

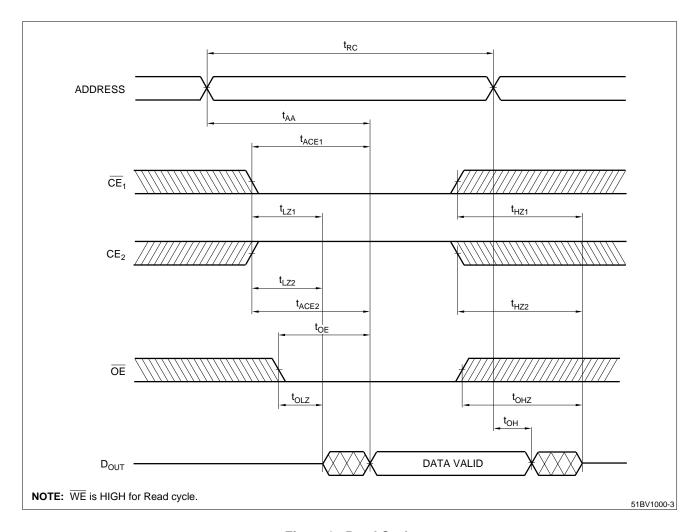
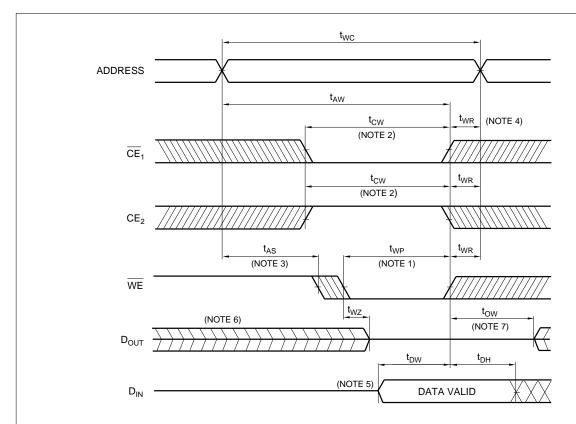


Figure 3. Read Cycle



NOTES:

- 1. A write occurs during the overlap of a LOW \(\overline{CE}_1\), a HIGH CE₂ and a LOW \(\overline{WE}\), A write begins at the latest transition among \(\overline{CE}_1\) going LOW, CE₂ going HIGH and \(\overline{WE}\) going LOW. A write ends at the earliest transition among \(\overline{CE}_1\) going HIGH, CE₂ going LOW and \(\overline{WE}\) going HIGH. t_{WP} is measured from the beginning of write to the end of write.
- 2. t_{CW} is measured from the latter of $\overline{\text{CE}}_1$ going LOW or CE_2 going HIGH to the
- 3. t_{AS} is measured from the address valid to the beginning of write.
- t_{WR} is measured from the end of write to the address change. t_{WR1} applies in case a write ends at CE₁ or WE going HIGH. t_{WR2} applies in case a write ends at CE₂ going LOW.
- 5. During this period, I/O pins are in the output state, therefore the input signals of opposite phase to the outputs must not be applied.
- If \(\overline{CE}_1\) goes LOW simultaneously with \(\overline{WE}\) going LOW or after \(\overline{WE}\) going LOW, the outputs remain in high impedance state.
- If CE₁ goes HIGH simulaneously with WE going HIGH or before WE going HIGH, the outputs remain in high impedance state.

51BV1000-4

Figure 4. Write Cycle (OE Controlled)

NOTES:

- 1. A write occurs during the overlap of a LOW \(\overline{CE}_1\), a HIGH CE₂ and a LOW \(\overline{WE}\), A write begins at the latest transition among \(\overline{CE}_1\) going LOW, CE₂ going HIGH and \(\overline{WE}\) going LOW. A write ends at the earliest transition among \(\overline{CE}_1\) going HIGH. CE₂ going LOW and \(\overline{WE}\) going HIGH. t_{WP} is measured from the beginning of write to the end of write.
- 2. $t_{\rm CW}$ is measured from the latter of $\overline{\rm CE}_1$ going LOW or ${\rm CE}_2$ going HIGH to the end of write.
- 3. t_{AS} is measured from the address valid to the beginning of write.
- 4. t_{WR} is measured from the end of write to the address change. t_{WR1} applies in case a write ends at \overline{CE}_1 or \overline{WE} going HIGH. t_{WR2} applies in case a write ends at CE_2 going LOW.
- During this period, I/O pins are in the output state, therefore the input signals of opposite phase to the outputs must not be applied.
- If CE₁ goes LOW simultaneously with WE going LOW or after WE going LOW, the outputs remain in high impedance state.
- If CE₁ goes HIGH simulaneously with WE going HIGH or before WE going HIGH, the outputs remain in high impedance state.

51BV1000-5

Figure 5. Write Cycle (OE Low Fixed)

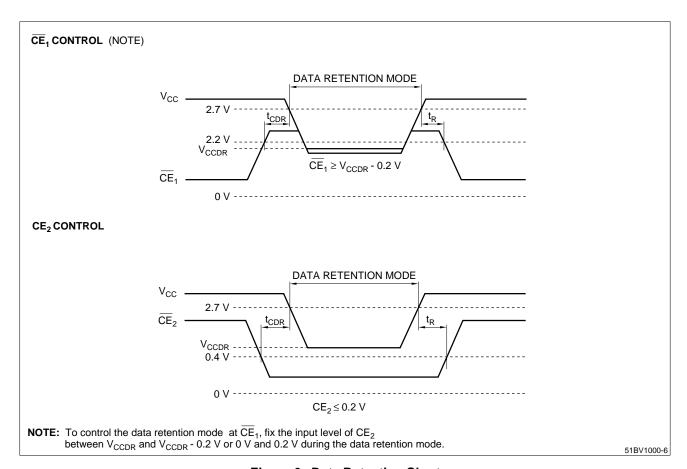
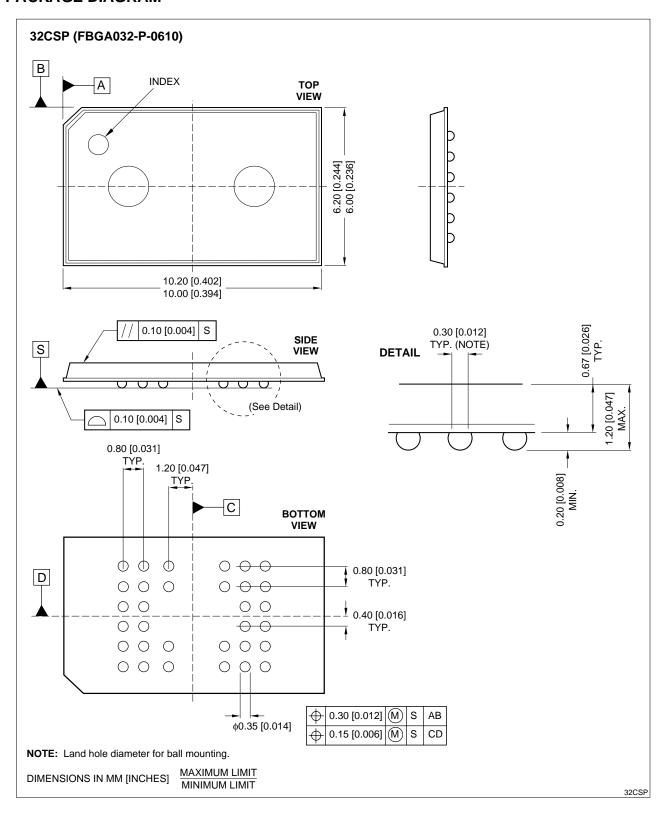
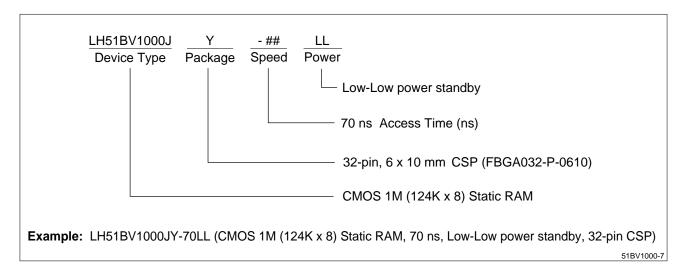




Figure 6. Data Retention Chart (CE₁ Controlled)

PACKAGE DIAGRAM

ORDERING INFORMATION

