LR38266

DESCRIPTION

The LR38266 is a CMOS digital signal processor for color CCD camera systems of 270 k/320 k/410 k/470 k-pixel CCD with complementary color filters.

FEATURES

- Designed for 270 k/320 k/410 k/470 k color CCDs with Mg, G, Cy, and Ye complementary color filters
- Switchable between NTSC and PAL modes
- External performance control
- Variable GAMMA and KNEE response
- 8 to 10-bit digital input
- Analog Y&C output by built-in 8-bit 2 ch DA converter
- Switchable between Y, U/V (16 bits) and U/Y/V/Y (8 bits) digital video output
- Line-lock and external lock function
- CPU interface input/output
- Accumulator to control auto exposure and auto white balance
- Single +3.3 V power supply
- Package :
 100-pin LQFP (LQFP100-P-1414) 0.5 mm pin-pitch

In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that may occur in equipment using any SHARP devices shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device.

Digital Signal Processor for Color CCD Cameras

PIN CONNECTIONS

BLOCK DIAGRAM

PIN DESCRIPTION

PIN NO.	SYMBOL	I/O	POLARITY	DESCRIPTION			
1	ACL	ICU		All reset input. The internal circuit is initialized at power-on with a capacitor of 0.01 μ F.			
2	ADIo	IC	$\overline{\mathbf{x}}$				
3	ADI1	IC		ADIo to ADI9 are digital signal inputs.			
4	ADI2	IC		ADIo is LSB.			
5	ADI3	IC		ADI9 is MSB.			
6	ADI4	IC	TX I				
7	Vdd	_		Supply of +3.3 V power.			
8	GND	_		A grounding pin.			
9	ADI5	IC	\sim				
10	ADI6	IC		ADIo to ADI9 are digital signal inputs.			
11	ADI7	IC		ADIo is LSB.			
12	ADI8	IC		ADI9 is MSB.			
13	ADI9	IC					
14	GND	_		A grounding pin.			
15	Vdd	_		Supply of +3.3 V power.			
16	OCP1	0	Π	Optical black clamp pulse output.			
17	CSYNC	0	ΙŪ	Composite synchronous pulse output for analog video output.			
18	GND	-		A grounding pin.			
				Clock input. The frequency is below for each CCD.			
19	CKI1	IC		270 k, 410 k CCD : 14.31818 MHz			
				320 k, 470 k CCD : 14.1875 MHz			
				Clock input. The frequency is below for each CCD.			
20	CKI2	IC		270 k CCD : 9.5454 MHz 320 k CCD : 9.4583 MHz			
				410 k CCD : 14.3181 MHz 470 k CCD : 14.1875 MHz			
21	GND	-		A grounding pin.			
				Clock input. The frequency is below for each CCD.			
22	CKI0	IC		270 k, 410 k CCD : 28.6363 MHz			
				320 k, 470 k CCD : 28.3750 MHz			
23	GND	-		A grounding pin.			
24	HP	0	Л	Horizontal drive pulse output.			
25	VD	0	Л	Vertical drive pulse output.			
26	VRI	ICS	U	Vertical reset input. Built-in vertical counter is reset by a low-input of more than			
27							
28	FI	0	\neg	Field index pulse output			
20		0		Composite blanking pulse output			
23	ODLIX	0					
30	CSYO	0	[]	Output timing is variable by output mode			
21	Vpp			Supply of ±3.3 V nower			
20	GND	-					
<u> </u>		_					

PIN NO.	SYMBOL	I/O	POLARITY	DESCRIPTION			
33	TST1	ICD		Test input. Connected to low or open.			
34	TST ₂	ICD		Test input. Connected to low or open.			
35	TST3	ICD		Test input. Connected to low or open.			
36	TST4	ICD		Test input. Connected to low or open.			
37	DCK2	0		Clock output for digital COUT.			
38	GND	_		A grounding pin.			
39	CO ₀	то	\mathbf{X}	0 hit disitel color size of sutsut			
40	CO1	то	\mathbf{X}				
41	CO ₂	то	\mathbf{X}				
42	CO3	то	\mathbf{X}	CO7 IS M5B.			
43	GND	_		A grounding pin.			
44	Vdd	_		Supply of +3.3 V power.			
45	CO4	то	\mathbf{X}				
46	CO ₅	то	\mathbf{X}	8-bit digital color signal output.			
47	CO ₆	то	\mathbf{X}				
48	CO7	то	\mathbf{X}	CO7 IS MSB.			
49	TST5	ICD		Test input. Connected to low or open.			
50	TST ₆	ICD		Test input. Connected to low or open.			
51	YENCO	DAO		Analog Y signal output.			
52	CENCO	DAO		Analog C signal output.			
= 0	.,	546		Bias voltage output of built-in DA converter, connected to GND through a			
53	53 VB1 DAO			capacitor.			
	.,	546		Bias voltage output of built-in DA converter, connected to GND through a			
54	VB2	DAO		capacitor.			
		546		Bias current output of built-in DA converter, connected to GND through a			
55	IREF1	DAO		resistor.			
50	1	D 40		Bias current output of built-in DA converter, connected to GND through a			
56	IREF2	DAO		resistor.			
57	DA VDD	-		Supply of +3.3 V power input for built-in DA converter.			
58	DA GND	_		A grounding pin for built-in DA converter.			
59	VREF	DAI		Bias voltage input of built-in DA converter, connected to +1.0 V power supply.			
60	YO ₀	то	\mathbf{X}				
61	YO1	то					
62	YO ₂	то	X				
63	YO ₃	то	X	YO7 IS MSB.			
64	Vdd	_		Supply of +3.3 V power.			
65	GND	-		A grounding pin.			
66	YO4	то		Marta da la			
67	YO ₅	то		Y digital outputs.			
68	YO ₆	то		YOO IS LSB.			
69	YO7	то	X	YU7 IS MSB.			

Pin No.	SYMBOL	I/O	POLARITY	DESCRIPTION				
70	DCK1	0		Clock output for YO output.				
71	GND	_		A grounding pin.				
72	Vdd	_		Supply of +3.3 V power.				
73	EOO	ХТО		Phase detector output comparing internal HD and HD1.				
74	DOC	ICD		Control input of YO and CO. H level sets both YO and CO high-impedance.				
75	HD1	0	Л	Horizontal drive pulse generated from ENC (pin 76).				
				Clock input to encode color signal.				
76	ENC	IC		Internal Synchronous mode : CKI2				
				Line Lock mode : same as CCD clock from outside or 4 fsc.				
77	GND	_		A grounding pin.				
78	SLDI	IC		Data input to set each coefficient of DSP.				
79	SCK	IC		Clock pulse input to set SLDI data to DSP.				
80	SDI	IC	U	Timing pulse input to set SLDI data to DSP.				
81	GND	—		A grounding pin.				
82	Vdd	-		Supply of +3.3 V power.				
83	ADD ₀	IC						
84	ADD1	IC						
85	ADD2	IC	\mathbf{X}	Address input to select an output data of DATA pins used in auto white				
86	ADD3	IC		balance and auto exposure.				
87	ADD4	IC		For details, see "Data Interface Timing".				
88	ADD5	IC						
89	ADD6	IC						
00	MCO1	0	ן זר	Control output to update internal data stored in DSP register. Data is updated				
30	MCOT	0		at the rising edge of MCO1.				
91	Vdd	_		Supply of +3.3 V power.				
92	GND	_		A grounding pin.				
93	DATA ₀	0						
94	DATA1	0						
95	DATA2	0		Data output to control auto white balance and auto exposure. Data of address				
96	DATA3	0		set by ADD inputs is output				
97	DATA4	0		For details, see "Data Interface Timing"				
98	DATA5	0		Tor details, see Data interface finning .				
99	DATA6	0						
100	DATA7	0						
IC	: Input pi	n (CMOS	level)	DAI : Input pin for DA converter				
ICU	: Input pir	i (CMOS le	evel with	pull-up resistor) O : Output pin				
ICD	: Input pir	I (CMOS le	evel with	pull-down resistor) TO : Tri-state output pin				
ICS	: Input pi	n (CMOS	schmitt	trigger level with pull- XTO : Tri-state output pin				
	down re	esistor)		DAO : DA converter output pin				

INTERNAL COEFFICIENT TABLE

ADDRESS	NAME	BIT	CONTENTS					
00h			Not used					
01h	STB_DA	6	Standby of DA converter			1 : Sta	andby	
	OUTPUT2	5	Output format option	bit 4 = 0 Y/C	(bit 5 = 0)	U/Y/V/Y (bit 5	= 1)	
	OUTPUT1	4	Output format option	bit $4 = 1$ Y, U/V	(bit 5 = 0)	Prohibited (bit	: 5 = 1)	
	TVMD	3	TV format option		0 : NTSC	1 : PA	L	
	TYPE2	2	CCD option	bit 2 = 0		bit 2 = 1		
		1	CCD ontion	bit 1 = 0 270 k/320	k with mirror	Prohibited		
	1111	-		bit 1 = 1 270 k/32	20 k	410 k/470 k		
	MIR	0	Image type option		0 : Norma	1 : Mir	ror	
02h	ADTI1	6	Input data is delayed by 1 c	lock cycle	0 : Not del	ayed 1 : De	layed	
	ADTI2	5	The clock type to input the	data	0 : Non-inv	verted 1: Inv	rerted	
	APTVC	4	Vertical edge enhancement	t	0 : ON	1 : OF	F	
	APTHC	3	Horizontal edge enhancem	ent	0 : ON	1 : OF	F	
	CKIL	2	Color killer function		0 : ON	1 : OF	F	
	MUTE_D	1	Muting digital signal outputs	6	0 : OFF	1 : ON	1	
	MUTE_A	0	Muting analog signal output	ts	0 : OFF	F 1 : ON		
03h	EOOCTRL	4	The polarity of EOO output	0 : Norma				
	INVSP	3	The polarity of SP1, SP2		0 : Norma			
	HGCO	2	The polarity of HG	0 : Norma				
	INTL	1	Interlace/Non-Interlace	0 : Interlac	e			
	EX_SXB	0	Standby of EOO function 0: St		0 : Standb	у		
04h	TESYL	5	Set YL zero in color proces	sing	0 : OFF	1 : ON	1	
	K1	4	Prohibited to change		0 : Should be kept as is			
	RAM_ST	2	Standby of delay lines		0 : OFF	1 : ON	1	
	SEL_UV	1	The option of U/V sequence	Э	0 : Norma			
	SEL_RB	0	The option of R/B sequence	Э	0 : Norma			
06h	CSYNCVARI	8 bits	Position tuning of CSYNC v Upper 4 bits : CSYNC, Low	vith the range from er 4 bits : CSYO	n +8 clock	to -7 clock of	CKI1.	
07h	CBLKBALI	8 bits	Position tuning of CBLK wit	h the ditto range.				
08h	CBK_Y	7				bit 7 = 0	bit 7 = 1	
		~	The position tuning of Y-CE	LK by CKI2 clock	bit 6 = 0	No tune	-1 clock	
	CBK_1	o			bit 6 = 1	1 clock	-1 clock	
	CBLK_C	5	The position tuning of mod	ulated C CPLK by		bit 5 = 0	bit 5 = 1	
		4		Dialed C-CBLK by	bit 4 = 0	No tune	-1 clock	
	CBLK_C	4	CK12 CIOCK		bit 4 = 1	1 clock	-1 clock	
	CBLK_UV	3	The position tuning of boos	hand C CPI K by		bit 3 = 0	bit 3 = 1	
		0	The position tuning of baseband C-CBLK by		bit 2 = 0	No tune	-1 clock	
					bit 2 = 1	1 clock	-1 clock	
	BFVARI	1	The position tuning of color	burst signal by		bit 1 = 0	bit 1 = 1	
		0		buist signal by	bit 0 = 0	No tune	-1 clock	
		U			bit 0 = 1	1 clock	-1 clock	

ADDRESS	NAME	BIT	CONTENTS			
11h	CSP_R1	8 bits	Coefficient to extract red color component			
12h	CSP_B1	8 bits	Coefficient to extract blue color component			
13h	CSP_R2	7 bits	Coefficient to tune the base level of red sign	al		
14h	CSP_B2	7 bits	Coefficient to tune the base level of blue sig	nal		
15h		Chita	Coefficient of the black balance of red signa			
16h		0 DILS	(15h) MSB : sign, other 5 bits : upper 5 bits	of coefficient		
	CB_R2	8 DIIS	(16h) lower 8 bits of coefficient			
17h		6 hita	Coefficient of the black balance of blue sign	al		
18h		0 Dits	(17h) MSB : sign, other 5 bits : upper 5 bits	of coefficient		
		o Dits	(18h) lower 8 bits of coefficient			
19h	WB_R1	1 bit	Upper coefficient to make white balance of I	ed signal		
1Ah	WB_R2	8 bits	(19h) MSB of coefficient (1Ah) lower 8	bits		
1Bh	WB_B1	1 bit	Upper coefficient to make white balance of blue signal			
1Ch	WB_B2	8 bits	(1Bh) MSB of coefficient (1Ch) lower 8	(1Bh) MSB of coefficient (1Ch) lower 8 bits		
1Dh	MAT R – Y	6 bits	Coefficient of R – Y matrix (MSB) sign bit			
1Eh	MAT B – Y	6 bits	Coefficient of B – Y matrix (MSB) sign bit			
1Fh	GA R – Y	6 bits	Coefficient of R – Y gain			
20h	GA B – Y	6 bits	Coefficient of B – Y gain			
21h	ENC_TI	3	The clock type of encoder input	0: Non-Inverted 1: Inverted		
	L_fsc	2	Latched by fsc clock before encoding	0 : Latched 1 : Non-latch	ned	
	MO_ENC	1	Encoding phase of PAL	0:4 phases 1:16/5 pha	ses	
	MUTE_E	0	Muting color signal at encoder	0 : Normal 1 : Muting		
22h	BAS R – Y	8 bits	Coefficient of color burst level at R - Y	(MSB) sign bit		
23h	BAS B – Y	8 bits	Coefficient of color burst level at B - Y	(MSB) sign bit		
24h	WBA_IP	8 bits	Positive range of white color signal at I-axis			
25h	WBA_IM	8 bits	Negative range of white color signal at I-axis	;		
26h	WBA_QP	8 bits	Positive range of white color signal at Q-axis	3		
27h	WBA_QM	8 bits	Negative range of white color signal at Q-ax	s		
28h	WBA_SEL	2 bits	Option of color signal type I/Q or R – Y/E	8 – Y		
29h	WB_HCL	8 bits	Limiter of AWB function at higher luminance level			
2Ah	WB_LCL	8 bits	Limiter of AWB function at lower luminance level			
2Bh	CKI_HCL	8 bits	Color suppression point at higher luminance level			
2Ch	CKI_LCL	8 bits	Color suppression point at lower luminance	evel		
2Dh			Luminance level to suppress color signal			
	CKI_HLGA	8 bits	Upper 4 bits : higher luminance level			
			Lower 4 bits : lower luminance level			

ADDRESS	NAME	BIT	CONTENTS					
2Eh		6		bit 6, bit 5, bit 4	000 : No tuning			
	III_0IQ			001	1 clock cycle delay			
	HT_1	5	Color killer timing at higher luminance	010, 011	2 clock cycles delay			
				100, 101, 110	2 clock cycles advance			
	HT_0	4		111	1 clock cycle advance			
	LT SIG	2		bit 2, bit 1, bit 0	000 : No tuning			
	21_010	-		001	1 clock cycle delay			
	LT_1	1	Color killer timing at lower luminance	010, 011	2 clock cycles delay			
				100, 101, 110	2 clock cycles advance			
	LI_0	0		111	1 clock cycle advance			
2Fh	CKI_HECL	8 bits	Horizontal aperture level to suppress color sig	nal				
30h	CKI_VECL	8 bits	Vertical aperture level to suppress color signa	1				
31h			Aperture level to suppress color signal					
	CKI_EGA	8 bits	Upper 4 bits : vertical aperture level					
			Lower 4 bits : horizontal aperture level					
32h	SEL_ESFT	7	Level of edge signal	0 : 1/4 times	1 : 1 time			
	VET SIG	6		bit 6, bit 5, bit 4	000 : No tuning			
	_			001	1 clock cycle delay			
	VET_1	5	Color killer timing at vertical transient portion	010, 011	2 clock cycles delay			
		4		100, 101, 110	2 clock cycles advance			
	VEI_U	4		111	1 clock cycle advance			
	HET_SIG	2		bit 2, bit 1, bit 0	000 : No tuning			
			Color killer timing at horizontal transient	001	1 clock cycle delay			
	HET_1	1		010, 011	2 clock cycles delay			
		0	P	100, 101, 110	2 clock cycles advance			
		0		111	1 clock cycle advance			
33h	CKI_LEV	5 bits	Level to suppress color signal					
34h	NSUP_R – Y	8 bits	Coring level of R – Y signal					
35h	NSUP_B – Y	8 bits	Coring level of B – Y signal					
36h	C_NE1	2	The polarity of color signal () : Normal	1 : Inverted			
	C_NE2	1	The polarity of color signal at gamma output () : Normal	1 : Inverted			
	BLK_CTRL	0	CBLK availability at output () : ON	1 : OFF			
37h	YL_SFT1	2 bits	Base level of YL signal					
38h	YL_SFT2	8 bits	s (38h) Lower 8 bits of coefficient					
39h	YL AMP	8 bits	s YL signal level to make R – Y and B – Y					
40h	 CGAM-A1	8 bits	s 1st input range of color gamma correction					
41h	CGAM-A2	8 bits	2nd input range of color gamma correction					
42h	CGAM-A3	8 bits	3rd input range of color gamma correction					
43h	CGAM-A4	8 bits	4th input range of color gamma correction					
44h	CGAM-A5	8 bits	5th input range of color gamma correction					

ADDRESS	NAME	BIT	CONTENTS				
45h	CGAM-A6	8 bits	6th input range of color gamma correction				
46h	CGAM-A7	8 bits	7th input range of color gamma correction				
47h	CGAM-A8	8 bits	8th input range of color gamma correction				
48h	CGAM-A9	8 bits	9th input range of color gamma correction				
49h	CGAM-P1	8 bits	Offset of 1st straight line at color gamma correction				
4Ah	CGAM-P2	8 bits	Offset of 2nd straight line at color gamma correction				
4Bh	CGAM-P3	8 bits	Offset of 3rd straight line at color gamma correction				
4Ch	CGAM-P4	8 bits	Offset of 4th straight line at color gamma correction				
4Dh	CGAM-P5	8 bits	Offset of 5th straight line at color gamma correction				
4Eh	CGAM-P6	8 bits	Offset of 6th straight line at color gamma correction				
4Fh	CGAM-P7	8 bits	Offset of 7th straight line at color gamma correction				
50h	CGAM-P8	8 bits	Offset of 8th straight line at color gamma correction				
51h	CGAM-P9	8 bits	Offset of 9th straight line at color gamma correction				
52h	CGAM-P10	8 bits	Offset of 10th straight line at color gamma correction				
53h	CGAM-F	1 bit	Polarity of color gamma correction 0 : + 1 : -				
54h	CGAM-S1	8 bits	Slope of 1st straight line at color gamma correction				
55h	CGAM-S2	8 bits	Slope of 2nd straight line at color gamma correction				
56h	CGAM-S3	8 bits	Slope of 3rd straight line at color gamma correction				
57h	CGAM-S4	8 bits	Slope of 4th straight line at color gamma correction				
58h	CGAM-S5	8 bits	Slope of 5th straight line at color gamma correction				
59h	CGAM-S6	8 bits	Slope of 6th straight line at color gamma correction				
5Ah	CGAM-S7	8 bits	Slope of 7th straight line at color gamma correction				
5Bh	CGAM-S8	8 bits	Slope of 8th straight line at color gamma correction				
5Ch	CGAM-S9	8 bits	Slope of 9th straight line at color gamma correction				
5Dh	CGAM-S10	8 bits	Slope of 10th straight line at color gamma correction				
60h	SETUP	6 bits	Set up level of luminance signal				
61h	APT_HGA	5 bits	Horizontal aperture gain				
62h	APT_HCL	7 bits	Coring level of horizontal aperture signal				
63h	APT_VGA	5 bits	Vertical aperture gain				
64h	APT_VCL	7 bits	Coring level of vertical aperture signal				
65h			Not used				
66h	VARI_MASK	4 bits	Position to erase color signal by luminance mask signal				
67h	6ADV	4	1 : 6 clocks advance of luminance signal 0 : No variation				
	8ADV	3	1: 8 clocks advance of luminance signal 0: No variation				
	4DLY	2	1 : 4 clocks delay of luminance signal 0 : No variation				
	2DLY	1	1 : 2 clocks delay of luminance signal 0 : No variation				
	1DLY	0	1 : 1 clock delay of luminance signal 0 : No variation				
68h	HVARI	2 bits	Position of horizontal aperture signal				

ADDRESS NAME BIT			CONTE	NTS				
69h	Y_MUTE	3	Muting analog luminance signal output	0 : Normal	1 : Muting			
CBLK_OFF		2	CBLK availability for luminance signal	0 : ON	1 : OFF			
	SEL_BLK	1	Pedestal level of luminance signal	0 : 16th step	1 : 0 step			
	Y_NEGA	0	The polarity of luminance signal	0 : Normal	1 : Inverted			
6Ah	Y_NESFT	8 bits	Base level of luminance signal					
6Bh	Y_NEAMP	8 bits	Luminance signal level					
6Ch	MASK_NE	8 bits	Masking level of luminance signal					
6Dh			Not used					
6Eh			Not used					
6Fh			Not used					
70h	CGAM-A1	8 bits	1st input range of color gamma correction					
71h	CGAM-A2	8 bits	2nd input range of color gamma correction					
72h	CGAM-A3	8 bits	3rd input range of color gamma correction					
73h	CGAM-A4	8 bits	4th input range of color gamma correction					
74h	CGAM-A5	8 bits	5th input range of color gamma correction					
75h	CGAM-A6	8 bits	6th input range of color gamma correction	6th input range of color gamma correction				
76h	CGAM-A7	8 bits	7th input range of color gamma correction					
77h	CGAM-A8	8 bits	8th input range of color gamma correction					
78h	CGAM-A9	8 bits	9th input range of color gamma correction					
79h	CGAM-P1	8 bits	Offset of 1st straight line at color gamma correction					
7Ah	CGAM-P2	8 bits	Offset of 2nd straight line at color gamma correction					
7Bh	CGAM-P3	8 bits	Offset of 3rd straight line at color gamma correction					
7Ch	CGAM-P4	8 bits	Offset of 4th straight line at color gamma correction					
7Dh	CGAM-P5	8 bits	Offset of 5th straight line at color gamma co	prrection				
7Eh	CGAM-P6	8 bits	Offset of 6th straight line at color gamma co	prrection				
7Fh	CGAM-P7	8 bits	Offset of 7th straight line at color gamma co	prrection				
80h	CGAM-P8	8 bits	Offset of 8th straight line at color gamma co	orrection				
81h	CGAM-P9	8 bits	Offset of 9th straight line at color gamma co	orrection				
82h	CGAM-P10	8 bits	Offset of 10th straight line at color gamma of	correction				
83h	CGAM-F	1 bit	Polarity of color gamma correction	0:+	1:-			
84h	CGAM-S1	8 bits	Slope of 1st straight line at color gamma co	rrection				
85h	CGAM-S2	8 bits	Slope of 2nd straight line at color gamma c	orrection				
86h	CGAM-S3	8 bits	Slope of 3rd straight line at color gamma co	prrection				
87h	CGAM-S4	8 bits	Slope of 4th straight line at color gamma co	Slope of 4th straight line at color gamma correction				
88h	CGAM-S5	8 bits	Slope of 5th straight line at color gamma co	Slope of 5th straight line at color gamma correction				
89h	CGAM-S6	8 bits	Slope of 6th straight line at color gamma correction					
8Ah	CGAM-S7	8 bits	Slope of 7th straight line at color gamma correction					
8Bh	CGAM-S8	8 bits	Slope of 8th straight line at color gamma co	orrection				
8Ch	CGAM-S9	8 bits	Slope of 9th straight line at color gamma co	Slope of 9th straight line at color gamma correction				
8Dh	CGAM-S10	8 bits	Slope of 10th straight line at color gamma of	correction				
8Eh			Not used					

ADDRESS	NAME	BIT	CONTENTS				
8Fh			Not used				
A0h			The option of white balance data equat	tion			
	SEL_WBD	7	0 : Accumulated data/Image area				
			The option to detect peak level to contr	rol the exposure			
	PEAK4_8	6	0 : Accumulated data of 4 pixels				
			1 : Accumulated data of 8 pixels				
		5	The area in horizontal to detect peak le	evel to control the exp	osure		
		5		0 : OFF	1 : ON		
The area in vertical to detect peak level to control the exposure							
		4		0 : OFF	1 : ON		
	I_WBA_H	3	The area in horizontal to detect average level to control both the exposure and				
			white balance	0 : OFF	1 : ON		
		/ 2	The area in vertical to detect average level to control both the exposure and				
	I_VUDA_V		white balance	0 : OFF	1 : ON		
	MASK_H	1	Horizontal mask signal availability	0 : OFF	1 : ON		
	MASK_V	0	Vertical mask signal availability	0 : OFF	1 : ON		
A1h	HMSKF_U	2 bits	Upper 2 bits of starting point to mask ir	n horizontal			
A2h	HMSKF_L	8 bits	Lower 8 bits of starting point to mask ir	n horizontal			
A3h	HMSKR_U	2 bits	Upper 2 bits of ending point to mask in horizontal				
A4h	HMSKR_L	8 bits	Lower 8 bits of ending point to mask in horizontal				
A5h	VMSKF_U	1 bit	Upper 1 bit of starting point to mask in vertical				
A7h	VMSKF_L	8 bits	Lower 8 bits of starting point to mask in vertical				
A8h	VMSKR_U	1 bit	Upper 1 bit of ending point to mask in v	vertical			
A9h	VMSKR_L	8 bits	Lower 8 bits of ending point to mask in	vertical			

OUTPUT DATA

Output Data Table

ADDRESS	NAME	BIT	CONTENTS		
00 to 07h	IRIS-1-1 to 8	8 bits	Average data to control exposure		
08 to 0Fh	IRIS-2-1 to 8	8 bits	Average data to control exposure		
10 to 17h	IRIS-3-1 to 8	8 bits	Average data to control exposure		
18 to 1Fh	IRIS-4-1 to 8	8 bits	Average data to control exposure		
20 to 27h	IRIS-5-1 to 8	8 bits	Average data to control exposure		
28 to 2Fh	IRIS-6-1 to 8	8 bits	Average data to control exposure		
30 to 37h	IRIS-7-1 to 8	8 bits	Average data to control exposure		
38 to 3Fh	IRIS-8-1 to 8	8 bits	Average data to control exposure		
40 to 43h	AWBI-1-1 to 4	8 bits	Average data of I/D		
44 to 47h	AWBI-2-1 to 4	8 bits	Average data of i/n - Y axis to control auto while balance		
48 to 4Bh	AWBI-3-1 to 4	8 bits	Average data of I/D V evic to control oute white holence		
4C to 4Fh	AWBI-4-1 to 4	8 bits	Average data of I/H – F axis to control auto white balance		
50 to 53h	AWBQ-1-1 to 4	8 bits	Average data of O/P . V axis to control outs white belonce		
54 to 57h	AWBQ-2-1 to 4	8 bits	Average data of Q/B – F axis to control auto while balance		
58 to 5Bh	AWBQ-3-1 to 4	8 bits	Average data of O/P . V axis to control outs white belonce		
5C to 5Fh	AWBQ-4-1 to 4	8 bits	Average data of Q/B – F axis to control auto while balance		
60h	H_PEAK	8 bits	Maximum luminance signal out of 64 blocks		
61h	L_PEAK	8 bits	Minimum luminance signal out of 64 blocks		
62h	OB_DATA	8 bits	Average data of optical pixels		
63h	C1_OB_R	8 bits	Average data of optical pixels for Mg + Ye		
64h	C3_OB_B	8 bits	Average data of optical pixels for Mg + Cy		

Position of Each Output on Image Screen

(1) Luminance Signal Data to Control Exposure

IRIS-1-1	IRIS-1-2	IRIS-1-3	IRIS-1-4	IRIS-1-5	IRIS-1-6	IRIS-1-7	IRIS-1-8
IRIS-2-1	IRIS-2-2	IRIS-2-3	IRIS-2-4	IRIS-2-5	IRIS-2-6	IRIS-2-7	IRIS-2-8
IRIS-3-1	IRIS-3-2	IRIS-3-3	IRIS-3-4	IRIS-3-5	IRIS-3-6	IRIS-3-7	IRIS-3-8
IRIS-4-1	IRIS-4-2	IRIS-4-3	IRIS-4-4	IRIS-4-5	IRIS-4-6	IRIS-4-7	IRIS-4-8
IRIS-5-1	IRIS-5-2	IRIS-5-3	IRIS-5-4	IRIS-5-5	IRIS-5-6	IRIS-5-7	IRIS-5-8
IRIS-6-1	IRIS-6-2	IRIS-6-3	IRIS-6-4	IRIS-6-5	IRIS-6-6	IRIS-6-7	IRIS-6-8
IRIS-7-1	IRIS-7-2	IRIS-7-3	IRIS-7-4	IRIS-7-5	IRIS-7-6	IRIS-7-7	IRIS-7-8
IRIS-8-1	IRIS-8-2	IRIS-8-3	IRIS-8-4	IRIS-8-5	IRIS-8-6	IRIS-8-7	IRIS-8-8

Left-top Side of Image

(2) Color Signal Data to Control Auto White Balance

Left-top Side of Image

AWBI/AWBQ-1-1	AWBI/AWBQ-1-2	AWBI/AWBQ-1-2	AWBI/AWBQ-1-2
AWBI/AWBQ-2-1	AWBI/AWBQ-2-2	AWBI/AWBQ-2-2	AWBI/AWBQ-2-2
AWBI/AWBQ-3-1	AWBI/AWBQ-3-2	AWBI/AWBQ-3-2	AWBI/AWBQ-3-2
AWBI/AWBQ-4-1	AWBI/AWBQ-4-2	AWBI/AWBQ-4-2	AWBI/AWBQ-4-2

Either I or R – Y is selectable by address 28h.

Either Q or B - Y is selectable by address 28h.

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT
Power supply voltage	Vdd	-0.3 to +4.6	V
Input voltage	VI	-0.3 to VDD + 0.3	V
Output voltage	Vo	-0.3 to VDD + 0.3	V
Storage temperature	Tstg	-55 to +150	°C

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Power supply voltage	Vdd	3.0	3.3	3.6	V
Operating temperature	TOPR	-20	+25	+70	°C
Input clock frequency	fcĸ		28.6		MHz

ELECTRICAL CHARACTERISTICS

(VDD = 3.3±0.33 V, TOPR = -20 to +70 °C)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT	NOTE
Input "Low" voltage	VIL				0.2Vdd	V	4
Input "High" voltage	Viн		0.8Vdd			V	
Input "Low" voltage	Vt-				0.2Vdd	V	
Input "High" voltage	VT+		0.8Vdd			V	2
Hysteresis voltage	Vt+ – Vt-		0.2			V	
Output "Low" voltage	VOL1	lo∟ = −1.6 mA			0.1Vdd	V	
Output "High" voltage	VOH2	Iон = 0.8 mA	0.9Vdd			V	3
Output leakage current	loz	High-impedance	-1.0		1.0	μA]
Output "Low" voltage	VOL1	lo∟ = −1.6 mA			0.1Vdd	V	
Output "High" voltage	VOH2	Iон = 0.8 mA	0.9Vdd			V	4
Output leakage current	loz	High-impedance	-1.0		1.0	μA]
Input "Low" current	IOL1	VIN = 0 V		10		μA	5
Input "High" current	Іон2	VIN = VDD		10		μA	6
Output "Low" voltage	VOL1	lo∟ = −1.6 mA			0.1Vdd	V	7
Output "High" voltage	VOH2	Iон = 0.8 mA	0.9Vdd			V	
Resolution	RES			8		Bit	
Linearity error	EL	VREF = 1.0 V			±3.0	LSB	
Differential error	ED	Rref= 4.8 kΩ			±1.0	LSB	8
Full scale current	IFS	Rout = 75 Ω		13		mA	1
Reference voltage	VREF			1.0		V	9
Reference resistance	RREF			4.8		kΩ	10
Output load resistance	Rout			75		Ω	8

NOTES :

- 1. Applied to inputs (IC, ICD, ICU).
- 2. Applied to input (ICS).
- 3. Applied to output (TO).
- 4. Applied to output (XTO).
- 5. Applied to input (ICU).

- 6. Applied to input (ICD).
- 7. Applied to output (O).
- 8. Applied to outputs (YENCO, CENCO).
- 9. Applied to input (VREF).
- 10. Applied to inputs (IREF1, IREF2).

Data Interface Timing

Data Input

Data Output

DETAIL EXPLANATION

CCD

CCD type out of 270 k, 320 k, 410 k and 470 k pixels is selected by address 01h.

Output Signal Format

(1) Analog Video Signal Output

Built-in DA converters output luminance (Y) signal without CSYNC and modulated color signal of NTSC or PAL.

Standby mode of DA converter makes DA output pins high impedance.

(2) Digital Video Signal Output (address 01h)

One out of three formats below is selectable by address 01h. High level of pin 74 as DOC makes all digital output pins high impedance.

- 1. 8-bit Y and 8-bit C
- 2. 8-bit Y and 8-bit U/V
- 3. 8-bit U/Y/V/Y

Camera Control Data Output

 Exposure Control Data Output (64 data with 8 bits and 2 data with 8 bits)

The user-defined image area consists of 64 blocks divided into 8 x 8 blocks. Each average luminance level is output to DATA output pins by setting ADD input pins.

In the defined area, the maximum luminance level and the minimum luminance level are output to DATA output pins.

(2) White Balance Control Data Output (two kinds of 16 data with 8 bits)

The user-defined image area consists of 16 blocks divided into 4 x 4 blocks. Average color signal levels of either both I and Q or both R - Y and B - Y are output to DATA output pins by setting ADD input pins.

(3) Black Balance Control Data Output (3 data with 8 bits)

Three kinds of outputs below are at DATA output pins.

- An average signal of CCD optical black portion consisting of 4 pixels per horizontal line for 128 horizontal lines located in the image center.
- An average signal of CCD optical black portion consisting of 2 pixels per horizontal line for 128 horizontal lines located in the image center, which is available to tune the base level of Mg + Ye color signal component.
- An average signal of CCD optical black portion consisting of 2 pixels per horizontal line for 128 horizontal lines located in the image center, which is available to tune the base level of Mg + Cy color signal component.

Camera Signal Processing

(1) Optical Black Signal Clamping

The optical black signal portion is clamped so as to be 64h by using the average level of the input digital signal. The averaging is done for every field.

(2) Horizontal Period Delay Line

There are two horizontal delay lines in this IC for camera signal processing.

(3) Digital Filter for Luminance Signal

These are low-pass filters to make a Y signal from the color CCD signal.

(4) Gamma Correction for Luminance Signal 10-bit input signal is converted into an 8-bit signal with a gamma curve defined by 10 straight lines. Slope and position of every straight line can be set by address.

(5) Edge Enhancement of Luminance Signal After gamma correction, the edge of the luminance signal is enhanced in both horizontal and vertical. How to enhance is tunable by address. (6) Set-up Level of Luminance Signal

The set-up level is tunable by address.

(7) Polarity Option and Level Tuning of Luminance Signal

The polarity of the input signal from the AD converter can be inverted before filtering.

The DC offset level and the amplitude are tunable by address.

(8) Masking Luminance Signal

The restricted area in the whole image can be set by address.

The exposure function and the auto white balance function can be used only in the restricted area.

(9) Extract of Color Signal Component

Color signal components are extracted by following processing calculation.

 $Red = (Mg + Ye) - K_1 (G + Cy)$

 $Blue = (Mg + Cy) - K_2 (G + Ye)$

YL = ((Mg + Ye) + (G + Cy) + (Mg + Cy) + (G + Ye))/4K1 and K2 are variable by address.

(10) Digital Filter of Color Signal Component Red, blue and YL are passed to limit each bandwidth so as to be half of extracted signals by low-pass filters.

(11) Black Level Clamping of Color Signal Component The black level of red and blue signals can be tuned by address 15h, 16h, 17h, and 18h.

(12) White Balance

The amplitude of red and blue signals can be tuned by address 19h, 1Ah, 1Bh, and 1Ch for white balance situation.

(13) Color Gamma Correction

10-bit input signal of red, blue and YL signals are converted into an 8-bit signal with gamma curve defined by 10 straight lines.

The slope and position of every straight line can be set by address.

(14) Color Matrix Correction

Color rendition can be tuned by address 1Dh and 1Eh under below equation.

 $R - Y = (R - Y) + K_1 (B - Y)$ $B - Y = (B - Y) + K_2 (R - Y)$

(15) Color Level Adjustment

The amplitude of R - Y and B - Y can be tuned by address 1Fh and 20h.

(16) Color Level Suppression

A false color signal at both the transient portion of luminance signal and the high-light portion of luminance signal can be suppressed by address 2Bh, 2Ch, 2Dh, 2Eh, 30h, 31h, 32h, 33h, 34h and 35h.

(17) Polarity Option and Level Tuning of Color Signal The polarity of the color component signal can be inverted before gamma correction.

The DC offset level and the amplitude are tunable by address 36h, 37h, 38h and 39h.

(18) NTSC/PAL Color Signal Encoder

 $\mathsf{R}-\mathsf{Y}$ and $\mathsf{B}-\mathsf{Y}$ color signals are modulated under NTSC or PAL format.

Modulated clock frequency and TV format are selected by address 03h, 21h, 22h and 23h.

Line-lock system requires the clock generator outside LR38266.

(19) Accumulator to Control Exposure

Three kinds of output data below become available by address A0h, 00h to 3Fh, 60h and 61h.

- Average signal in either the whole image or restricted area.
- Maximum signal in either the whole image or restricted area.
- Minimum signal in either the whole image or restricted area.

(20) Accumulator to Control White Balance

Output data below become available by address 24h, 25h, 26h, 27h, 28h, 29h, 2Ah, A0h and 4Fh to 5Fh.

Average signal of I (R - Y) and Q (B - Y) in 16 areas of the whole image.

These data can be weighted by both the color zone of I-axis and/or Q-axis and the range of luminance.

(21) Accumulator to Control Color Black Balance Average signal of the optical black portion to clamp the black level of color signal is available by address 62h, 63h and 64h.

(22) Others

- The output timing of synchronous signals are available by address 06h, 07h and 08h.
- Functions like standby, muting, etc. are available by address 01h, 03h, 04h and 21h.

PACKAGE

(Unit : mm)

