GP1F351T/GP1F351R

Features

- Electric and optical signal compatible design (Three kinds of terminals are integrated into a single unit)
- Compact design with small jack compatible mini-plug (Less than 1/2 in volume of GP1F32T/R)
- 3. OPIC type

(Direct interface to microcomputer of the I/O signals)(High fidelity real sound reproduction)

 High speed data transmission Signal transmisson speed: MAX. 8Mbps (NRZ signal)

Applications

MD, DCC
Portable CD, DAT

Optical Mini-Jack for Digital Audio Equipment

* OPIC is a trademark of Sharp and stands for Optical IC. It has light detecting element and signal processing circuitry integrated single chip.

■ Absolute Maximum Ratings

GP1F351T/GP1F351R (Photoelectric conversion element)

Parameter	Symbol	Rating	Unit
Supply voltage	V _{CC} - 0.5 to + 7.0		V
Output output (CD1E251D)	I _{OH} 4 (source current)		mA
Output current (GF1F351R)	Iol	4 (sink current)	mA
Input voltage (GP1F351T)	V _{im} - 0.5 to V _{CC} + 5.0		V
Operating temperature	Topr	- 20 to + 70	°C
Storage temperature	T _{stg}	- 30 to + 80	°C
*1Soldering temperature	T _{sol}	260	°C

GP1F351T/GP1F351R (Jack)

Parameter	Symbol	Rating	Unit
Total power dissipation	Ptot	D.C.12V, 1A	-
Isolation voltage	V _{iso}	A.C. 500V _{rms} (For 1min.)	-
Operating temperature	Topr	- 20 to 70	°C
Storage temperature	T _{stg}	- 30 to 80	°C
*1Soldering temperature	T _{sol}	260	°C

*1 5s/time up to 2 times.

■ Recommended Operating Conditions

GP1F351T

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Supply voltage	Vcc	4.75	5.0	5.25	V
Operating transfer rate	Т	-	-	8	Mbps

GP1F351R

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Supply voltage	V _{CC}	4.75	5.0	5.25	V
Operating transfer rate	Т	0.1	-	8	Mbps
Receiver input optical power level	Pc	- 24.0	-	- 14.5	dBm

■ Electro-optical Characteristics

GP1F351T	(Photoelectric con	version element)
----------	--------------------	------------------

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Peak emission wavelength	λ_{P}	-	630	660	690	nm
Optical power output coupling with fiber	Pc	Refer to Fig. 1	- 21	- 17	- 15	dBm
Supply current	Icc	Refer to Fig. 2	-	4	10	mA
High level input voltage	V _{iH}	Refer to Fig. 2	2	-	-	V
Low level input voltage	V _{iL}	Refer to Fig. 2	-	-	0.8	V
Low→High delay time	t _{PLH}	Refer to Fig. 3	-	-	100	ns
High→Low delay time	t _{PHL}	Refer to Fig. 3	-	-	100	ns
Pulse width distortion	Δ tw	Refer to Fig. 3	- 25	-	+ 25	ns
Jitter	Δ tj	Refer to Fig. 3	-	1	25	ns

 $(Ta = 25^{\circ}C)$

GP1F351R (Photoelectric conversion element)

$(Ta= 25^{\circ}C)$

Pa	rameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Peak sensitiv wavelength	ity	λp	-	-	700	-	nm
Supply current	nt	Icc	Refer to Fig. 4	-	15	40	mA
High level ou	itput voltage	VOH	Refer to Fig. 5	2.7	3.5	-	V
Low level ou	tput voltage	Vol	Refer to Fig. 5	-	0.2	0.4	V
Rise time		tr	Refer to Fig. 5	-	12	30	ns
Fall time		tf	Refer to Fig. 5	-	4	30	ns
$Low \rightarrow High$	delay time	t _{PLH}	Refer to Fig. 5	-	-	100	ns
High→ Low	delay time	t _{PHL}	Refer to Fig. 5	-	-	100	ns
Pulse width d	listortion	Δtw	Refer to Fig. 5	- 30	-	+ 30	ns
Litter	$P_C = -14.5 dBm$	Δ.:	Defente Fig. 6	-	1	30	ns
Jitter	$P_C = -24 dBm$	Δŋ	Keler to Fig. 6	-	-	30	ns

Mechanical and Electrical Characteristics

GP1F351T/GP1F351R (Jack)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Insertion force, withdrawal force	Fp	*2	5	-	35	N
Contact resistance	Rcon	*3	-	-	30	mΩ
Isolation resistance	R ISO	D.C. 500V, 1min.	100	-	-	MΩ

Note) This jack is designed for applicable to ϕ 3.5 compact single head plug (EIAJ RC-6701A).

*2 Measuring method of insertion force and withdrawal force.

Insertion and withdrawal force shall be measured after inserting and withdrawing 3 times by using EIAJ RC-6701A standard plug for test.

*3 Measuring method of contact resistance.

About movable contact terminal and make contacts, it measures at 100mA or less and $1000H_Z$ at the condition of inserting EIAJ 6701A standard plug for tast.

Fig. 1 Measuring Method of Optical Output Coupling Fiber

Note) (1) $V_{CC} = 5.0V \pm 0.05V$ (State of operating)

 (2) To bundle up the standard fiber optic cable, make it into a loop with the diameter D= 10cm or more.
(The standard fiber optic cable will be specified elsewhere.)

Fig. 2 Measuring Method of Input Voltage and Supply Current

Input conditions and judgement method

Conditions	Judgement method
$V_{in} = 2.0 V$ or more	$-21 \le P_C \le -15 dBm$, I cc= 10mA or less
$V_{in} = 0.8 V \text{ or less}$	$P_C \le -36 dBm$, $I_{CC} = 10 mA$ or less

Note) $V_{CC} = 5.0 \pm 0.05 V$ (State of operating)

Fig. 3 Measuring Method of Pulse Response and Jitter

Test item

Test time	Symbol	Test condition
Low→High pulse delay time	t _{PLH}	-
High→Low pulse delay time	t _{PHL}	-
Pulse width distortion	Δtw	$\Delta tw = t_{PHL} - t_{PLH}$
Low→High Jitter	Δ tjr	Set the trigger on the rise of input signal to measure the jitter of the rise of output
High→Low Jitter	Δtjf	Set the trigger on the fall of input signal to measure the jitter of the fall of output

Note) (1) The waveform write time shall be 4 seconds. But do not allow the waveform to be distorted by increasing the brightness too much.

(2) $V_{CC} = 5.0 \pm 0.05 V$ (State of operating)

(3) The probe for the oscilloscope must be more than $1M\Omega$ and less than 10pF.

Fig. 4 Supply Current

Inp	Measuring method	
Supply voltage	$V_{CC}=5.0\pm0.05V$	Managurad on an
Optical output coupling fiber	$P_C = -14.5 dBm$	ammeter
Standard transmitter input signal	6Mbps NRZ, Duty 50% or 3Mbps biphase mark PRBS signal	amperage)

Fig. 5 Measuring Method of Output Voltage and Pulse Response

Test item

Test item	Symbol
Low→High pulse delay time	tplh
High→Low pulse delay time	t _{PHL}
Rise time	tr
Fall time	tf
Pulse width distortion $\Delta tw = t_{PHL} - t_{PLH}$	Δtw
High level output voltage	Vон
Low level output voltage	Vol

Note) (1) V_{CC} = 5.0 $\pm 0.05 V$ (State of operating)

(2) The fiber coupling light output set at - 14.5dBm/- 24.0dBm.

(3) The probe for the oscilloscope must be more than $1M\Omega$ and less than 10pF.

(4) Rsi, Rso : Standard load resistance (Rsi : $3.3k\Omega$, Rso : $2.2k\Omega$)

(5) The output (H/L level) of GP1F351R are not fixed constantly when it receivers the disturbing light (including DC light, no input light) less than 0.1Mbps.

Fig. 6 Measuring Method of Jitter

Test item

Test item	Symbol	Test condition	
Low→High Jitter	Δtjr	Set the trigger on the rise of input signal to measure the jitter of the rise of output	
High \rightarrow Low Jitter Δ tjf		Set the trigger on the fall of input signal to measure the jitter of the fall of output	

Note) (1) Rsi/Rso ; Standard load resistance (Rsi : $3.3k\Omega$,Rso : $2.2k\Omega$)

(2) The fiber coupling light output set at - 14.5dBm/ - 24.0dBm.

(3) The waveform write time shall be 3 seconds. But do not allow the waveform to be distorted by increasing the brightness too much.

(4) $V_{CC} = 5.0 \pm 0.05 V$ (State of operating)

(5) The probe for the oscilloscope must be more than 1M Ω and less than 10pF.

■ Optical Mini-Jack Connection Example

Kinds of alug	Output			
Kinds of plug	4	5	1	
Analog electricity	L	L	L	
Digital electricity	L	L	Н	
Digital optics	L	Н	Н	
No plug	Н	Н	Н	

• Please refer to the chapter "Precautions for Use"