PRELIMINARY PRODUCT SPECIFICATIONS

Integrated Circuits Group

LRS1329

Stacked Chip 16M Flash and 2M SRAM

(Model No.: LRS1329)

Spec No.: MFM2-J11601 Issue Date: June 10, 1999

L R S 1 3 2 9

- SHARP
 - Handle this document carefully for it contains material protected by international copyright law. Any reproduction, full or in part, of this material is prohibited without the express written permission of the company.
 - When using the products covered herein, please observe the conditions written herein and the precautions outlined in the following paragraphs. In no event shall the company be liable for any damages resulting from failure to strictly adhere to these conditions and precautions.
 - The products covered herein are designed and manufactured for the following application areas. When using the products covered herein for the equipment listed in Paragraph (2), even for the following application areas, be sure to observe the precautions given in Paragraph (2). Never use the products for the equipment listed in Paragraph (3).
 - Office electronics
 - Instrumentation and measuring equipment
 - Machine tools
 - Audiovisual equipment
 - Home appliances
 - · Communication equipment other than for trunk lines
 - (2) Those contemplating using the products covered herein for the following equipment which demands high reliability, should first contact a sales representative of the company and then accept responsibility for incorporating into the design fail-sale operation, redundancy, and other appropriate measures for ensuring reliability and safety of the equipment and the overall system.
 - Control and safety devices for airplanes, trains, automobiles, and other transportation equipment
 - Mainframe computers
 - · Traffic control systems
 - · Gas leak detectors and automatic cutoff devices
 - Rescue and security equipment
 - Other safety devices and safety equipment, etc.
 - (3) Do not use the products covered herein for the following equipment which demands extremely high performance in terms of functionality, reliability, or accuracy.
 - Aerospace equipment
 - · Communications equipment for trunk lines
 - · Control equipment for the nuclear power industry
 - Medical equipment related to life support, etc.
 - (4) Please direct all queries and comments regarding the interpretation of the above three Paragraphs to a sales representative of the company.
- Please direct all queries regarding the products covered herein to a sales representative of the company.

L R S 1 3 2 9

Contents	
1. Description	• 2
2. Pin Configuration · · · · · · · · · · · · · · · · · · ·	• 3
3. Truth Table · · · · · · · · · · · · · · · · · · ·	• 4
4. Block Diagram ••••••••••••••••••••••••••••••••••••	• 4
5. Command Definitions for Flash Memory	• 5
6. Status Register Definition ••••••••••••••••••••••••••••••••••••	• 6
7. Memory Map for Flash Memory	• 7
8. Absolute Maximum Ratings	• 8
9. Recommended DC Operating Conditions	• 8
10. Pin Capacitance ••••••••••••••••••••••••••••••••••••	• 8
11. DC Electrical Characteristics	9
12. AC Electrical Characteristics (Flash Memory) ••••••••••••••••••••••••••••••••••••	11
13. AC Electrical Characteristics (SRAM) ••••••••••••••••••••••••••••••••••••	18
14. Data Retention Characteristics for SRAM ••••••••••••••••••••••••••••••••••••	21
15. Notes • • • • • • • • • • • • • • • • • • •	22
16. Flash Memory Data Protection • • • • • • • • • • • • • • • • • • •	23
17. Design Consideration	24

.

• ,

LRS1329

Part 1 Overview 1. Description The LRS1329 is a combination memory organized as 1M x16/2M x8 bit flash memory and 256K x8 bit static RAM in one package. Features 2.7 V to 3.6 V OPower supply -25 ℃ to +85 ℃ Operating temperature ONot designed or rated as radiation hardened O 72 pin CSP (LCSP072-P-0811) plastic package OFlash memory has P-type bulk silicon, and SRAM has P-type bulk silicon. Flash Memory •••• 100 ns (Max.) OAccess Time OOperating current (The current for $F\text{-}V_{cc}$ pin) $\cdot \cdot \cdot \cdot 25 \text{ mA} (Max. t_{CYCLE}=200 \text{ ns})$ Read $\cdot \cdot \cdot \cdot 17 \text{ mA (Max.)}$ Word/Byte write $\cdot \cdot \cdot \cdot 17 \text{ mA (Max.)}$ Block erase Obeep power down current (The current for $F - V_{cc}$ pin) $\cdots 10 \mu A$ (Max. $F - \overline{CE} \ge F - V_{cc} - 0.2V$, $F \cdot \overline{RP} \leq 0.2V, F \cdot V_{PP} \leq 0.2V$ OOptimized Array Blocking Architecture Two 4K-word/8K-byte Boot Blocks/ Six 4K-word/8K-byte Parameter Blocks/ Thirty-one 32K-word/64K-byte Main Blocks/ Top Boot Location O Extended Cycling Capability 100,000 Block Erase Cycles O Enhanced Automated Suspend Options Word/Byte write Suspend to Read Block Erase Suspend to Word/Byte write Block Erase Suspend to Read SRAM 85 ns (Max.) OAccess Time . 30 mA (Max.) O0perating current 3 mA (Max. t_{RC} , $t_{wc}=1 \mu$ s) $\cdot \cdot \cdot \cdot 15 \ \mu A \ (Max.)$ OStandby current $\cdot \cdot \cdot \cdot 15 \ \mu A \ (Max.)$ OData retention current

LRS1329

2. Pin Configuration INDEX 2 3 Æ 4 5 6 7 8 9 10 11 12 F-DQ15 /F-A.L A 13 S-OE (F·GND) NC NC NC NC NC NC A₁₂ A A₁₁ F DQ14 SICE S-CE, DQ, S-WE A, A 16 B A 10 F·DQ · DQ12 DQ6 DQ5 T_1 RY/\overline{BY} F-WE F·RP С (F · DQ₁₁ Tz S - V_{cc} A₈ BYTE DQ4 F · V_{cc} D GND (Top View) F.DQ10 T₄ F-WP T3 DQ3 - GND Е F - A19 A 14 F F · A17 NC DQ2 DQ, F - DQ A₇ - A₁₈ A₁ F - DQ A₆ (F-GND) A 15 DQ, A₅ A4 G S - A17 F·CE $(F \cdot \overline{0E})$ NC NC NC NC A3 A₂ A_0 NC NC H Notes: All F-GND and S-GND pins must connect to GND. Two NC pins at the corner are connected. From T_1 to T_4 pins need to be open. Pin Description A_0 to A_{16} Address Inputs (Common) F-A.1, F-A17 to F-A18 Address Inputs (Flash) F-A.1: Not used in x16 mode. Address Input (SRAM) S-A17 F-CE Chip Enable (Flash) S-CE, , S-CE Chip Enable (SRAM) Write Enable (Flash) F-WE ÷ Write Enable (SRAM) S-WE Output Enable (Flash) F-OE S-OE Output Enable (SRAM) F-RP Reset/Deep Power Down (Flash) Block erase and Word/Byte Write : V_{IH} or V_{HH} Read : VIH or V HB Deep Power Down : VIL F-WP Write Protect (Flash) Two Boot Blocks Locked : V₁₁ (With F-RP=V _{RH} Erase/Write can operate to all block) F-BYTE Byte Enable (Flash); x8 mode: V_{IL} x16 mode: V_{IH} F-RY/BY Ready/Busy (Flash) During an Erase or Write operation : V_{0L} Block Erase and Word/Byte Write Suspend High-Z Deep Power Down : V_{OH} Data Input/Outputs (Common) DQ to DQ 7 Data Inputs/Outputs (Flash); Not used in x8 mode. F-DQ 8 to F-DQ 1 F-V_{cc} Power Supply (Flash) S-V_{cc} Power Supply (SRAM) F-V_{PP} Write, Erase Power Supply (Flash) Block Erase and Word/Byte Write: $F - V_{pp} = V_{pptr}$ All Blocks Locked : F-V_{PP} < V_{PPLK} F-GND GND (Flash) GND (SRAM) S-GND NC No Connect Test pins (Should be open) T_1 to T_4

L R S 1 3 2 9

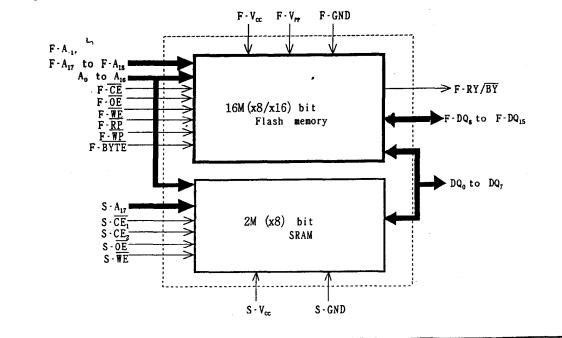
3. Truth Tal	ble (*1)													
Flash	SRAM	Note	F·CE	F-RP	F·OE	F-WE	S-CE1	S-CE2	S-OE	S-WE		DQ to DQ ₇	F-DQ ₈ to F-DQ	
Read		*4.5			L						H L	DO DOUT	UT High-Z	
Output Disable	Standby		L	н		н	ļ ,	*7	*7 X		х	H L	Hi	gh - Z
Write		*2, 3, 4			H	L					H L	D DIN	IN High-Z	
Standby	Read	*6		н	x	x			L H		_	DOUT	High-Z	
	Output Disable	*6	H				L	H		H	x	High·Z		
	Write	*6								L		DIN		
	Read	*6			x	x	L	Н	L	TT		DOUT		
Reset Power Down	Output Disable	*6	x	L					н	H	х	High-Z	High-Z	
	Write	*6								L		DIN		
Standby '	0	*6	H	н н		x	*7		x	x	x			
Reset Power Down	Standby	*6	x	L	X							High-Z		

Notes) *1. L=V_{IL}, H=V_{IH} , X=H or L . Refer to DC Characteristics.

*2. Command writes involving block erase or word/byte write are reliably executed when $F \cdot V_{PP} = V_{PPH}$ and $F \cdot V_{CC} = 2.7V$ to 3.6V. Block erase or word/byte write with $V_{IH} < F \cdot \overline{RP} < V_{HH}$ produce spurious results and should not be attempted.

*3. Refer Section 5. Flash Memory Comand Definition for valid DIN during a write operation.

*4. Never hold $F-\overline{OE}$ low and $F-\overline{WE}$ low at the same timing.


*5.	F-A.1	set	to	VIL	or	VIH	in	byte	mode	$(\mathbf{F} \cdot \overline{\mathbf{B}\mathbf{Y}\mathbf{T}\mathbf{E}} = \mathbf{V}_{\mathbf{I}\mathbf{L}})$.
-----	-------	-----	----	-----	----	-----	----	------	------	--

*6. F-WP set to V_{1L} or V_{1R} .

*7. See the following SRAM Standby mode.

SRAM	Standby Mod	e
Mode	S-CE1	S-CE ₂
SRAM	Н	X
Standby	· X ·	L

4. Block Diagram

5 Command Definitions for Flash Memory (*1)

			1	First Bus (ycle	Seco	ond Bus Cy	<u>rcle</u>
Command	Bus Cycles Req'd.	Note	0per (*2)	Address (*3)	Data (*3)	0per (*2)	Address (* 3)	Data (*3)
Read Array/Reset	1		Write	XA	HTT			
Read Identifier Codes	≥2	*4	Write	XA	90H	Read	IA	ID
Read Status Register	2		Write	XA	70H	Read	XA	SRD
Clear Status Register	1		Write	XA	50H			
Block Erase	2	*5	Write	BA	20H	Write	BA	DOH
Word/Byte Write	2	*5	Write	WA	40H or 10H	Write	WA	WD
Block Erase and Word/Byte Write Suspend	1	*5	Write	XA	BOH			
Block Erase and Word/Byte Write Resume	1	*5	Write	XA	DOH			

Note)

*1. Commands other than those shown above are reserved by SHARP for future device implementations and should not be used.

*2. BUS operations are defined in 3. Truth Table.

- *3. XA=Any valid address within the device. IA=Identifier Code Address. BA=Address within the block being erased. WA=Address of memory location to be written. SRD=Data read from status register (See the next page"Status Register Definition"). WD=Data to be written at location WA. Data is latched on the rising edge of F-WE or F-CE (whichever goes high first). ID=Data read from identifier codes.
- ***4**. See the Following Identifier Codes.
- *5. See the following Write Protection Alternatives.

Identif	ier Codes	
Codes	Address [A ₁₈ -A ₀]	Data [DQ ₇ -DQ ₀]
Manufacture Code	00000H	BOH
Device Code	00001H	4 8H

Write Protection Alternatives

Operation	F · V _{PP}	F-RP	F:WP	Effect
	V _{IL}	X	X	All Blocks Locked.
Block Erase or Word/Byte Write	>V _{pplk}	V _{IL}	X	All Blocks Locked.
		V	X	All Blocks Unlocked.
		V _{IH}	V _{IL}	2 Boot Blocks Locked.
		VIH	V _{IR}	All Blocks Unlocks.

LRS1329

7654321076543210765432108776543210887765432108111110110110999111111101110111 <th>WSMS</th> <th>ESS</th> <th>ΕS</th> <th>WBWS</th> <th>VPPS</th> <th>WBWSS</th> <th>DPS</th> <th>R</th>	WSMS	ESS	ΕS	WBWS	VPPS	WBWSS	DPS	R			
S.R. 7 = WRITE STATE MACHINE STATUS (WSMS) 1 = Ready 0 = Busy S.R. 6 = ERASE SUSPEND STATUS (ESS) 1 = Block Erase Suspended 0 = Successful Block Erase S.R. 4 = WORD/BYTE WRITE STATUS (WBWS) 1 = Error in Word/Byte Write 0 = Successful Word/Byte Write S.R. 3 = V _{PP} STATUS (VPPS) 1 = F · V _{PP} Low Detect, Operation Abort 0 = F · V _{PP} OK S.R. 2 = WORD/BYTE WRITE SUSPENDED STATUS (WBWSS) 1 = Word/Byte Write Suspended 0 = Unlock S.R. 0 = RESERVED FOR FUTURE ENHANCEMENTS S.R. 0 = RESERVED FOR FUTURE ENHANCEMENTS S.R. 0 is reserved for future use and should be	7.	6	5	4	3	2	1	0			
 1 = Block Erase Suspended 0 = Block Erase in Progress/Completed S R. 5 = ERASE STATUS (ES) 1 = Error in Block Erasure 0 = Successful Block Erase S R. 4 = WORD/BYTE WRITE STATUS (WBWS) 1 = Error in Word/Byte Write O = Successful Word/Byte Write S R. 3 = V_{PP} STATUS (VPPS) 1 = F-V_{PP} Low Detect, Operation Abort 0 = F-V_{PP} OK S R. 2 = WORD/BYTE WRITE SUSPENDED STATUS (WBWSS) 1 = Word/Byte Write Suspended 0 = Word/Byte Write in Progress/Completed S R. 1 = DEVICE PROTECT STATUS (DPS) 1 = F-WP or F-RP Lock Detected, Operation Abort 0 = Unlock S R. 0 = RESERVED FOR FUTURE ENHANCEMENTS 	1 = Re	ady	CHINE STATUS	S(WSMS)	Check RY/BY word/byte w	rite complet					
1 = Error in Block Erasure 0 = Successful Block Eraseerase attempt, an improper command sequence was entered.S R. 4 = WORD/BYTE WRITE STATUS (WBWS) 1 = Error in Word/Byte Writestatempt, an improper command sequence was entered.S R. 4 = WORD/BYTE WRITE STATUS (WBWS) 1 = Error in Word/Byte Writestatempt, an improper command sequence was entered.S R. 3 = Vpp STATUS (VPPS) 1 = F·Vpp Status (VPPS) 0 = F·Vpp Comparison Abort 0 = F·Vpp OKstatempt, an improper command sequence was entered.S R. 3 = Vpp STATUS (VPPS) 1 = F·Wp OKStatus (VPPS) (WBWSS) 1 = Word/Byte Write Suspended 0 = Word/Byte Write in Progress/CompletedStatus (VPPS) S R. 1 = DEVICE PROTECT STATUS (DPS) 1 = F·WP or F·RP Lock Detected, Operation Abort 0 = UnlockStatus (VPPS) S R. 0 = RESERVED FOR FUTURE ENHANCEMENTSStatus (VPPS) S R. 0 is reserved for future use and should be	1 = Blo	ock Erase Su	spended								
 1 = Error in Word/Byte Write 0 = Successful Word/Byte Write S R. 3 = V_{PP} STATUS (VPPS) 1 = F-V_{PP} Low Detect, Operation Abort 0 = F-V_{PP} OK S R. 2 = WORD/BYTE WRITE SUSPENDED STATUS (WBWSS) 1 = Word/Byte Write Suspended 0 = Word/Byte Write in Progress/Completed S R. 1 = DEVICE PROTECT STATUS (DPS) 1 = F-WP or F-RP Lock Detected, Operation Abort 0 = Unlock S R. 0 = RESERVED FOR FUTURE ENHANCEMENTS S R. 3 does not provide a continuous indication of F-V_{PP} level. The WSM interrogates and indicates the F-V_{PP} level only after Block Erase or Word/ByteWrite command sequences. SR. is not guaranteed to reports accurate feedback only when F-V_{PP} ≠ V_{PPH/2}.	1 = Err	ror in Block	Erasure		erase attem	apt, an impro					
 1 = F-V_{PP} Low Detect, Operation Abort 0 = F-V_{PP} OK S R. 2 = WORD/BYTE WRITE SUSPENDED STATUS (WBWSS) 1 = Word/Byte Write Suspended 0 = Word/Byte Write in Progress/Completed S R. 1 = DEVICE PROTECT STATUS (DPS) 1 = F-WP or F-RP Lock Detected, Operation Abort 0 = Unlock S R. 0 = RESERVED FOR FUTURE ENHANCEMENTS of F-V_{PP} level. The WSM interrogates and indicates the F-V_{PP} level only after Block Erase or Word/Byte Write command sequences. SR. is not guaranteed to reports accurate feedback only when F-V_{PP} ≠ V_{PPH1/2}. The WSM interrogates the F-WP and F-RP only after Block Erase or Word/Byte Write command sequences. It informs the system, depending on the attempted operation, if the F-WP is not V_{IH}, F-RP is not V_{IH}. SR. 0 is reserved for future use and should be 	1 = Er	ror in Word/	Byte Write								
 S R. 2 = WORD/BYTE WRITE SUSPENDED STATUS (WBWSS) 1 = Word/Byte Write Suspended 0 = Word/Byte Write in Progress/Completed S R. 1= DEVICE PROTECT STATUS (DPS) 1 = F-WP or F-RP Lock Detected, Operation Abort 0 = Unlock S R. 0 = RESERVED FOR FUTURE ENHANCEMENTS S R. 0 = RESERVED FOR FUTURE ENHANCEMENTS 	1 = F - V	V _{PP} Low Detec		n Abort	of $F-V_{PP}$ level. The WSM interrogates and indicates the $F-V_{PP}$ level only after Block						
$SR. 1 = DEVICE PROTECT STATUS (DPS)$ $1 = F - \overline{WP} \text{ or } F - \overline{RP} \text{ Lock Detected,}$ $Operation Abort$ $0 = Unlock$ $SR. 0 = RESERVED FOR FUTURE ENHANCEMENTS$	1 = Wor	d/ByteWrite	(WB Suspended	WSS)	is not guar	anteed to re					
	S R. 1 = DEV $1 = F \cdot \overline{V}$ Opt	ICE PROTECT S P or F-RP Lo eration Abor	STATUS (D)	PS)	The WSM interrogates the $F \cdot WP$ and $F \cdot RP$ only after Block Erase or Word/Byte Write command sequences. It informs the system, depending on the attempted operation, if the $F \cdot WP$ is						
	S R. 0 = RES	SERVED FOR FU	JTURE ENHANC								

L R S 1 3 2 9

7. Memory Map for Flash Memory

mory	Map	for	Flash	Memory		
				Address		Address [A10-A1]
				[A ₁₀ -A ₀] FFFFF [Top Boot	1 1FFFFF
				FF000 FEFFF	4K-word/8K-byte Boot Block	1FE000 1FDFFF
				FE000 FDFFF	4K-word/8K-byte Boot Block	1FC000 1FBFFF
•				FD000 FCFFF	4K-word/8K-byte Parameter Block	1FA000 1P9FFF
				FC000 FBFFF	4K-word/8K-byte Parameter Block	1F8000 1F7FFF
				FB000 FAFFF	4K-word/8K-byte Parameter Block	1F6000 1F5FFF
				FA000 F9FFF	4K-word/8K-byte Parameter Block	1F4000
				F9000	4K-word/8K-byte Parameter Block	1F3FFF 1F2000
				F8FFF F8000 F7FFF	4K-word/8K-byte Parameter Block	1F1FFF 1 <u>F0000</u>
				F0000	32K-word/64K-byte Main Block	1EFFF 1 <u>E0000</u>
				EFFFF E8000	32K-word/64K-byte Main Block	10FFFF 100000
				E7FFF E0000	32K-word/64K-byte Main Block	1CFFFF
				DEFFF DB000	32K-word/64K-byte Main Block	1BFFFF 180000
				07FFF 00000	32K-word/64K-byte Main Block	1AFFFF 1A0000
				CFFFF C8000	32K-word/64K-byte Main Block	19FFFF 190000
				C7FFF C0000	32K-word/64K-byte Main Block	18FFFF 180000
				BFFFF B8000	32K-word/64K-byte Main Block	17FFF 170000
				87FFF 80000	32K-word/64K-byte Main Block	16FFFF 165FFFF
				AFFFF	32K-word/64K-byte Main Block	15FFFF 150000
				A8000 A7FFF A0000	32K-word/64K-byte Main Block	14FFFF
				9FFFF	32K-word/64K-byte Main Block	140000 L3FFFF
				98000 97FFF	32K-word/64K-byte Main Block	130000 12FFFF
				90000 8FFFF	32K-word/64K-byte Main Block	120000 11FFFF
				88000 87FFF	32K-word/64K-byte Main Block	110000 10FFFF
				80000 7FFFF	32K-word/64K-byte Main Block	- 966666
				78000 77FFF	32K-word/64K-byte Main Block	0EPFFF
				70000 6FFFF	32K-word/64K-byte Main Block	0ED000 0DFFFF
				68000 67FFF		000000 OCFFFF
				60000 5FFFF		0C0000 0BFFFF
				58000 57FFF		080000 OAFFFF
				50000 4FTFF		040000 09FFFF
				48000 47FFF	32K-word/64K-byte Main Block	090000 08FFFF
				40000 3FFFF	32K-word/64K-byte Main Block 32K-word/64K-byte Main Block	080000 07FFFF
				38000 37FFF		070000 06FFFF
. •				30000 2FFFF	32K-word/64K-byte Main Block	060000 OSFFFF
				28000 27FFF	32K-word/64K-byte Main Block	050000 04FFFF
				20000 1FFFF	32K-word/64K-byte Main Block	040000 03FFFF
				18000 17FFF	32K-word/64K-byte Main Block	030000 02FFFF
				10000 0FFFF	32K-word/64K-byte Main Block	020000 01FFFF
				08000 07FFF	32K-word/64K-byte Main Block	010000 00FFFF
				00000	32K-word/64K-byte Main Block	000000
			/	$/$ \land	\ /	
					\backslash /	
			/			\mathbf{X}
						\mathbf{X}
	/	/				
	F	- A 19	F - A 18 F	-A 17	· · A 2 A 1 A 0 F · A 19 F · A 18 F · A	A_1
		19	18	17	20 19 18	
	MS				LSB MSB	LSB
			X 8	Mod	e X 1	6 Mode

7

.

8. Absolute Maximum Ratings

Parameter	Symbol	Ratings	Unit
• Supply voltage (*1,2)	V _{cc}	-0.2 to $+4.6$	V
Input voltage (*1,3)	V _{IN}	-0.2 (*4) to Vcc+0.3	V
Operating temperature	T _{opr}	-25 to $+85$	r
Storage temperature	T _{stg}	-65 to $+125$	C
F-V _{PP} voltage (*1)	F-V _{pp}	-0.2 (*4) to $+14.0$ (*5)	V
F-RP voltage (*1)	F-RP	-0.5 (*4) to +14.0(*5)	V

Notes) *1. The maximum applicable voltage on any pins with respect to GND.

*2. Except F-V_{PP.}

*3. Except F-RP.

*4. -2.0V undershoot is allowed when the pulse width is less than 20nsec.

*5. \pm 14.0V overshoot is allowed when the pulse width is less than 20nsec.

9. Recommended DC Operating Conditions

 $(T_{1} = -25 C to +85 C)$

			\-a		-
Parameter	Symbol	Min.	Тур.	Max.	Unit
Supply voltage	V _{cc}	2.7	3.0	3.6	V
Input voltage	VIR	2.2		$V_{cc} + 0.3(*1)$	V
	V _{IL}	-0.2 (*2)		0.8	V
	V _{III} (*3)	11.4		12.6	V

Notes) *1. V_{cc} is the lower one of S-V_{cc} and F-V_{cc}.

*2. -2.0V undershoot is allowed when the pulse width is less than 20nsec.

*3. This voltage is applicable to $F - \overline{RP}$ Pin only.

10. Pin Capacitance

 $(T_a=25^{\circ}C, f=1MHz)$

		•										
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit]					
Input capacitance	C _{IN}	V _{IN} =OV			20	pF	*1					
I/O capacitance	C _{1/0}	V _{1/0} =OV			22	pF	*1					

Note) *1 Sampled but not 100% tested

11. DC Characteristics

			eristics $(T_a = -25)$					
	Parameter	Symbol	Conditions		Mín.	Typ. (*1)	Max.	Unit
Inp	ut leakage current(I _{LI})	I _{LI}	$V_{IN} = V_{CC}$ or GND		-1.5		+1.5	μA
Output leakage current (I _{LO})		I _{lo}	$V_{out} = V_{cc} \text{ or GND}$		-1.5		+1.5	μA
F-V _{cc}	V_{cc} Standby Current	I _{ccs} (*2, 7)	$F \cdot \overline{CE} = F \cdot \overline{RP} = F \cdot V_{cc} \pm F \cdot \overline{WP} = F \cdot V_{cc} \pm 0.2V$ or $F \cdot \overline{GND} \pm 0.2V$	0. 2V		25	50	μA
			$F - \overline{CE} = F - \overline{RP} = V_{IH}$ $F - \overline{WP} = V_{IH} \text{ or } V_{IL}$			0.2	2	mА
	Deep Power–Down Current	I _{CCD} (*7)	$F \cdot \overline{RP} = F \cdot GND \pm 0.2V$, I_{out} ($F \cdot RY \overline{/BY}$) = OmA			5	10	μA
	V_{cc} Read Current	I _{ccr} (*3, 4)	CMOS Input F-CE=F-GND, f=5MHz,	I _{outt} =OmA			25	mA
		(+0, 1)	TTL_Input F-CE=F-GND, f=5MHz,	I _{out} =OmA			30	mA
	V _{cc} Word/Byte Write Current	I _{CCW}	F-V _{PP} =V _{PPH}				17	mA
	V_{cc} Block Erase Current	I _{CCE}	F-V _{PP} =V _{PPH}				17	шA
	V _{cc} Word/Byte Write Block Erase Suspend Current	I _{ccns} I _{cces}	$F - \overline{CE} = V_{IH}$				6	mA
F-V _{PP}	V _{PP} Standby or	IPPS	$F - V_{PP} = F - V_{CC}$			± 2	±15	μ Α
	Read Current	I _{ppr}	$F - V_{PP} > F - V_{CC}$			10	200	μA
	V _{PP} Deep Power Down Current	Ippd	$F \cdot \overline{RP} = F \cdot GND \pm 0.2V$			0.1	5	μA
	V _{PP} Word/Byte Write Current	IPPW	F-V _{PP} =V _{PPH}			12	40	mA
	V _{PP} Block Erase Current	IPPE	F-V _{PP} =V _{PPH}			8	25	mA
	V _{PP} Word/Byte Write or Block Erase Suspend Current	I _{pp#S} I _{ppes}	F-V _{PP} =V _{PPH}			10	200	μA
s-V _{cc}		I ^{2B}	$\begin{array}{c} S \overline{-CE}_{1}, S \overline{-CE}_{2} \geq S \overline{-V}_{cc} \\ or S \overline{-CE}_{2} \leq 0, 2V \end{array}$	0. 2V			15	μA
		I _{SB1}	$S - \overline{CE}_1 = V_{IH} \text{ or } S - CE_2$				3.0	mA
	Operation Current	I _{cc1}		t _{cycLE} =Min. I _{1/0} =OmA			30	mA
		I _{cc2}	$S - \overline{CE_1} = 0.2V$,	t _{cycle} =1μs I _{1/0} =OmA			3	mА

LRS1329

DC Characteristics (Contin	nue)	(T _a = −25℃ to	+85 °C	, V _{cc} =	2.7 V to	3.6 V
Parameter	Symbol	Test Conditions	Min.	Typ. (*1)	Max.	Unit
Input Low Voltage	V		-0.2		0.8	V
Input High Voltage	VIII		2.2		$V_{cc} + 0.3$	V
Output Low Voltage	V _{0L} (*2)	$I_{oL} = 2.0 \text{ mA}$			0.4	V
Output High Voltage	V _{0H1} (*2)	$I_{OH} = -1.0 \text{ mA}$	2.4			V
F-V _{PP} Lockout during Normal Operations	V _{ppla} (*5)				1.5	V
F-V _{PP} Word/Byte Write or Block Erase Operations	V _{PPR}		2.7		3.6	V
F–V _{cc} Lockout Voltage	VLKO		1.5			V
F-RP Unlock Voltage	V _{RH} (*6)	Unavailable F-WP	11.4		12.6	V

Notes)

1. Reference values at $V_{cc}=3.0V$ and $T_a=+25^{\circ}C$.

2. Includes F-RY/BY.

- 3. Automatic Power Savings (APS) for Flash Memory reduces typical $I_{\rm CCR}$ to 3mA at 2.7V $V_{\rm CC}$ in static operation.
- 4. CMOS inputs are either V_{cc} \pm0.2V or GND±0.2V. TTL inputs are either V_{IL} or $V_{IH}.$

5. Block erases and word/byte writes are inhibited when $F \cdot V_{PP} \leq V_{PPLX}$ and not guaranteed in the range between V_{PPLX} (max) and V_{PPH} (min), and above V_{PPH} (max).

6. $\overline{F-RP}$ connection to a V_{HH} supply is allowed for a maximum cumulative period of 80 hours.

7. F- $\overline{\text{BYTE}}$ is $V_{cc}\pm0.\,2V$ in word mode and is GND±0.2V in byte mode.

 $F-\overline{WP}$ is $V_{cc}\pm 0.2V$ or GND $\pm 0.2V$.

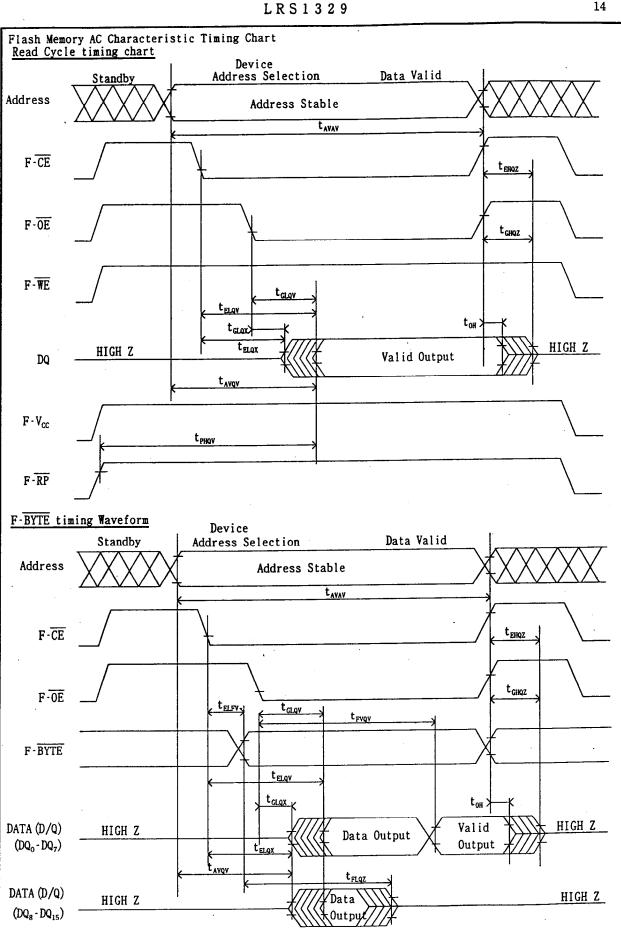
•

12. Flash memory AC Characteristics								
AC Test Condiions								
Input pulse level	0 V to 2.	.7 V					÷	
Input rise and fall time	5 n	15						
Input and Output timing Ref. level	1.35 V							
Output load	1TTL+C (30pF	?)						
Read Cycle	(T,=	= −25°C t	.0 +85	ΰĊ	, V _{cc} =	2.7V to	3.6v)
Parameter				Sym.	Min.	Max.	Unit	
Read Cycle Time				t _{avav}	100		ns	1
Address to Output Delay				tAVQV		100	ns	
F-CE to Output Delay				t _{elqv}		100	ns	*1
F-RP High to Output Delay		<u>.</u>		t _{phQv}		10	μs	5
F-OE to Output Delay				t _{glqv}		45	ns	*1
F-CE to Output in Low Z				t _{elqx}	0		ns	
F-CE High to Output in High Z				t _{ehqz}		45	ns	
F-OE to Output in Low Z				t _{glqx}	0		ns	
F-OE High to Output in High Z				t _{ghqz}		20	ns	
Output Hold from Address, F-CE or F-OE C	hange, Whiche	ever Occurs	First	t _{oH}	0		ns	
F-BYTE and A ₁ to Output Delay				t _{FVQV}		90	ns	
F-BYTE Low to Output in High Z				t _{flqz}		30	ns	
F-CE to F-BYTE High Z or Low				t _{elfv}		5	ns	-
Notes) *1. F-OE may be delayed up to t _{ELQV}	t _{riov} after th	ne falling	edge of	F-OE	witho	ut impa	ct on	t _{FLOV}
	and i							
Write Cycle (F-WE Controlled) (*2)	(1	∏= −25℃					o 3.6	
	(1			5°C M	, V _{cc} =		o 3.6 Unit	
Write Cycle (F-WE Controlled) (*2)	(1		to +8	5°C M	, V _{cc} = in. 00	2.7V t		
Write Cycle (F-WE Controlled) (*2) Parameter			to +8 Sym.	5°C M 1	, V _{cc} = in. 00 10	2.7V t	Unit	
Write Cycle (F-WE Controlled) (*2) Parameter Write Cycle Time			to +8 Sym. t _{avav}	5°C M 1	, V _{cc} = in. 00 10 0	2.7V t	Unit ns	
Write Cycle (F-WE Controlled) (*2) Parameter Write Cycle Time F-RP High Recovery to F-WE going to			to +8 Sym. t _{avav} t _{phwl}	5°C M 1	, V _{cc} - in. 00 10 0 50	2.7V t	Unit ns µs	
Write Cycle (F-WE Controlled) (*2) Parameter Write Cycle Time F-RP High Recovery to F-WE going to F-CE Setup to F-WE Going Low F-WE Pulse Width F-RP V _{HH} Setup to F-WE Going High			to +8 Sym. t _{avav} t _{phwl}	5°C M 1	, V _{cc} = in. 00 10 0 50 00	2.7V t	Unit ns µs ns	
Write Cycle (F-WE Controlled) (*2)ParameterWrite Cycle TimeF-RP High Recovery to F-WE going toF-CE Setup to F-WE Going LowF-WE Pulse WidthF-RP V _{HH} Setup to F-WE Going HighF-WP V _{HH} Setup to F-WE Going High			to +8 Sym. t _{avav} t _{phtl} t _{elvl} t _{tlvh}	5°C M 1	, V _{cc} = in. 00 10 0 50 00 00	2.7V t	Unit ns µs ns ns	
Write Cycle (F-WE Controlled) (*2)ParameterWrite Cycle TimeF-RP High Recovery to F-WE going toF-CE Setup to F-WE Going LowF-WE Pulse WidthF-WE Pulse WidthF-WP V _{HH} Setup to F-WE Going HighF-WP Setup to F-WE Going HighF-VPP Setup to F-WE Going High			to +8 Sym. t _{аvav} t _{phwt} t _{elwl} t _{wlwn}	5°C M 1 1 1 1 1	, V _{cc} = in. 00 10 0 50 00 00 00	2.7V t	Unit ns µs ns ns ns	W)
Write Cycle (F-WE Controlled) (*2)ParameterWrite Cycle TimeF-RP High Recovery to F-WE going toF-CE Setup to F-WE Going LowF-WE Pulse WidthF-RP V _{HH} Setup to F-WE Going HighF-WP V _{HH} Setup to F-WE Going High			to +8 Sym. t _{лvлv} t _{рнт} t _{ент} t _{телт} t _{телт}	5 °C M 1 1 1 1 1 1 1	, V _{cc} = in. 00 10 0 50 00 00 50	2.7V t	Unit ns µs ns ns ns ns	₩) *3
Write Cycle (F-WE Controlled) (*2)ParameterWrite Cycle TimeF-RP High Recovery to F-WE going toF-CE Setup to F-WE Going LowF-WE Pulse WidthF-WE Pulse WidthF-WP V _{HH} Setup to F-WE Going HighF-WP Setup to F-WE Going HighF-VPP Setup to F-WE Going HighAddress Setup to F-WE Going HighData Setup to F-WE Going High			to +8 Sym. t _{аvav} t _{рнит} t _{elut} t _{rlut} t _{rlut} t _{yput}	5 °C M 1 1 1 1 1 1 1	, V _{cc} = in. 00 10 0 50 00 00 50 50	2.7V t	Unit ns µs ns ns ns ns ns ns	W)
Write Cycle (F-WE Controlled) (*2)ParameterWrite Cycle TimeF-RP High Recovery to F-WE going toF-CE Setup to F-WE Going LowF-WE Pulse WidthF-WE Pulse WidthF-WP V _{HH} Setup to F-WE Going HighF-WP V _{HH} Setup to F-WE Going HighF-VPP Setup to F-WE Going HighAddress Setup to F-WE Going HighData Setup to F-WE Going HighData Hold from F-WE High			to +8 Sym. t _{лvлv} t _{рнт} t _{ешт} t _{тшт} t _{тшт} t _{урт} t _{урт}	5 °C M 1 1 1 1 1 1 1	, V _{cc} = in. 00 10 0 50 00 00 50 50 0	2.7V t	Unit ns µs ns ns ns ns ns ns ns	₩) *3
Write Cycle (F-WE Controlled) (*2)ParameterWrite Cycle TimeF-RP High Recovery to F-WE going toF-CE Setup to F-WE Going LowF-WE Pulse WidthF-WE Pulse WidthF-WP V _{HH} Setup to F-WE Going HighF-WP Setup to F-WE Going HighAddress Setup to F-WE Going HighData Setup to F-WE Going HighData Hold from F-WE High			to +8 Sym. t _{AVAV} t _{PHWL} t _{ELWL} t _{TLWH} t _{PHHWL} t _{VPWH} t _{SHWH} t _{VPWH} t _{AVTH} t _{AVVH} t _{DVWH}	5 °C M 1 1 1 1 1 1 1	, V _{cc} = in. 00 10 0 50 00 00 50 50	2.7V t	Unit ns µs ns ns ns ns ns ns ns ns	₩) *3
Write Cycle (F-WE Controlled) (*2)ParameterWrite Cycle TimeF-RP High Recovery to F-WE going toF-CE Setup to F-WE Going LowF-WE Pulse WidthF-WE Pulse WidthF-WP V _{HH} Setup to F-WE Going HighF-WP V _{HH} Setup to F-WE Going HighF-WP Setup to F-WE Going HighAddress Setup to F-WE Going HighData Setup to F-WE Going HighData Hold from F-WE HighF-CE Hold from F-WE High			to +8 Sym. t _{AVAV} t _{HUTL} t _{RLUH} t _{RLUH} t _{RLUH} t _{RLUH} t _{RLUH} t _{RLUH} t _{NUH} t _{VPUH} t _{NUX}	5 °C	, V _{cc} = in. 00 10 0 50 00 50 50 0 0 0 0 0 0	2.7V t	Unit ns μ s ns ns ns ns ns ns ns ns ns	₩) *3
Write Cycle (F-WE Controlled) (*2)ParameterWrite Cycle TimeF-RP High Recovery to F-WE going toF-CE Setup to F-WE Going LowF-WE Pulse WidthF-WE Pulse WidthF-WP V _{HH} Setup to F-WE Going HighF-WP V _{HH} Setup to F-WE Going HighF-VPP Setup to F-WE Going HighAddress Setup to F-WE Going HighData Setup to F-WE Going HighData Hold from F-WE HighF-CE Hold from F-WE HighF-WE Pulse Width High			to +8 Sym. t _{AVAV} t _{HWT} t _{ELVL} t _{TLWH} t _{FHWT} t _{VPWH} t _{VPWH} t _{AVVH} t _{VPWH} t _{AVVH} t _{QVWH} t _{QVWH} t _{QVWH} t _{WLAX} t _{WLAX}	5 °C	, V _{cc} = in. 00 10 00 50 00 00 50 50 0 0	2.7V t Max.	Unit ns µs ns ns ns ns ns ns ns ns ns ns	₩) *3
Write Cycle (F-WE Controlled) (*2)ParameterWrite Cycle TimeF-RP High Recovery to F-WE going toF-CE Setup to F-WE Going LowF-WE Pulse WidthF-WE Pulse WidthF-WP V _{HH} Setup to F-WE Going HighF-WP V _{HH} Setup to F-WE Going HighAddress Setup to F-WE Going HighData Setup to F-WE Going HighData Hold from F-WE HighF-CE Hold from F-WE HighF-WE Pulse Width HighF-WE High to F-WE Going Low			to +8 Sym. t_AVAV tphirt t_ELIT. trlint tphirtmin tshift typenh t_Avan typenh	5 °C	, V _{cc} = in. 00 10 0 50 00 50 50 0 0 0 0 0 0 0 0 0 0	2.7V t	Unit ns μ s ns ns ns ns ns ns ns ns ns ns ns	₩) *3
Write Cycle (F-WE Controlled) (*2)ParameterWrite Cycle TimeF-RP High Recovery to F-WE going toF-CE Setup to F-WE Going LowF-WE Pulse WidthF-WE Pulse WidthF-WP V _{HH} Setup to F-WE Going HighF-WP V _{HH} Setup to F-WE Going HighAddress Setup to F-WE Going HighData Setup to F-WE Going HighData Hold from F-WE Going HighF-CE Hold from F-WE HighF-CE Hold from F-WE HighF-WE Pulse Width HighF-WE High to F-RY/BY Going LowWrite Recovery before Read	Low		to +8 Sym. t _{AVAV} t _{HWT} t _{EUT} t _{TUFH} t _{FHHWT} t _{VPWH} t _{VPWH} t _{AVM} t _{VPWH} t _{VPWH} t _{VPWH} t _{WHAX} t _{WHAX} t _{WHEH} t _{WHM}	5 °C	, V _{cc}	2.7V t Max.	Unit ns µs ns ns ns ns ns ns ns ns ns ns ns ns ns	₩) *3
Write Cycle (F-WE Controlled) (*2)ParameterWrite Cycle TimeF-RP High Recovery to F-WE going toF-CE Setup to F-WE Going LowF-WE Pulse WidthF-WE Pulse WidthF-WP V _{HH} Setup to F-WE Going HighF-WP V _{HH} Setup to F-WE Going HighAddress Setup to F-WE Going HighData Setup to F-WE Going HighData Hold from F-WE HighF-CE Hold from F-WE HighF-WE Pulse Width HighF-WE High to F-RY/BY Going LowWrite Recovery before ReadF-V _{PP} Hold from Valid SRD, F-RY/BY Hi	Low		to +8 Sym. t _{AVAV} t _H t _{AVAV} t _H	5 °C	, V _{cc} - in. 00 10 0 50 00 00 50 50 0 0 0 0 0 0 0 0	2.7V t Max.	Unit ns μ s ns ns ns ns ns ns ns ns ns ns ns ns ns	₩) *3
Write Cycle (F-WE Controlled) (*2)ParameterWrite Cycle TimeF-RP High Recovery to F-WE going toF-CE Setup to F-WE Going LowF-WE Pulse WidthF-WE Pulse WidthF-WP V _{HH} Setup to F-WE Going HighF-WP V _{HH} Setup to F-WE Going HighAddress Setup to F-WE Going HighData Setup to F-WE Going HighData Hold from F-WE Going HighF-CE Hold from F-WE HighF-CE Hold from F-WE HighF-WE Pulse Width HighF-WE High to F-RY/BY Going LowWrite Recovery before Read	Low		to +8 Sym. t _{AVAV} t _{HWT} t _{EUT} t _{TL} WH t _{FHWT} t _{FHWT} t _{VPWH} t _{VPWH} t _{VPWH} t _{DVWH} t _{WHMT} t _{RHAX} t _{WHML} t _{WHML} t _{WHML} t _{WHML} t _{WHML}	5 °C	, V _{cc} - in. 00 10 0 50 00 50 50 0 0 0 0 0 0 0 0 0 0	2.7V t Max.	Unit ns μ s ns ns ns ns ns ns ns ns ns ns ns ns ns	₩) *3
Write Cycle (F-WE Controlled) (*2)ParameterWrite Cycle TimeF-RP High Recovery to F-WE going toF-CE Setup to F-WE Going LowF-WE Pulse WidthF-WE Pulse WidthF-WP V _{HH} Setup to F-WE Going HighF-WP V _{HH} Setup to F-WE Going HighAddress Setup to F-WE Going HighData Setup to F-WE Going HighData Hold from F-WE HighF-CE Hold from F-WE HighF-WE Pulse Width HighF-WE High to F-RY/BY Going LowWrite Recovery before ReadF-V _{PP} Hold from Valid SRD, F-RY/BY Hi	Low gh Z High Z		to +8 Sym. t _{AVAV} t _{HUT} t _{ELU} t _{UUH} t _{UUH} t _{VPTH} t _{VPTH} t _{OVTH} t _{VPTH} t _{UVTH} t _{VPTH}	5 °C	, V _{cc} = in. 00 10 0 50 00 50 0 0 0 0 0 0 0 0 0 0 0	2.7V t Max.	Unit ns μ s ns ns ns ns ns ns ns ns ns ns ns ns ns	₩) *3
Write Cycle (F-WE Controlled) (*2)ParameterWrite Cycle TimeF-RP High Recovery to F-WE going toF-CE Setup to F-WE Going LowF-WE Pulse WidthF-WE Pulse WidthF-WP V _{HH} Setup to F-WE Going HighF-WP Setup to F-WE Going HighAddress Setup to F-WE Going HighData Setup to F-WE Going HighData Hold from F-WE HighF-CE Hold from F-WE HighF-WE Pulse Width HighF-WE Pulse Width HighF-WE High to F-RY/BY Going LowWrite Recovery before ReadF-VPP Hold from Valid SRD, F-RY/BY HiF-RP V _{HH} Hold from Valid SRD, F-RY/BY	Low gh Z High Z		to +8 Sym. t _{AVAV} t _{RUA} t _{RUA} t _{LU} t _{LU} t _{TL} t _{RU}	5 °C	, V _{cc} - in. 00 10 0 50 00 50 50 0 0 0 0 0 0 0 0 0 0	2.7V t Max.	Unit ns μ s ns ns ns ns ns ns ns ns ns ns ns ns ns	₩) *3

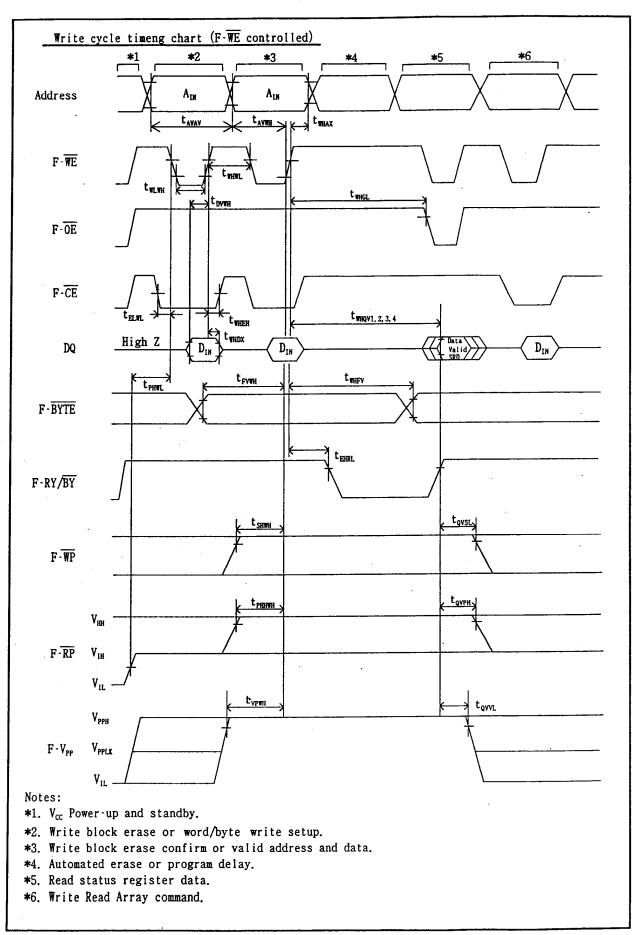
Write Cycle (F-CE Controlled) (*2)	(T _a = -25°	C to +85°C	, V _{cc} =	2.7V to	3. 6v
Parameter	Sym.	Min.	Max.	Unit	
Write Cycle Time	t _{avav}	100		ns	
F-RP High Recovery to F-CE going to Low	t _{phel}	10		μs	
$F-\overline{WE}$ Setup to $F-\overline{CE}$ Going Low	t _{WLEL}	0		ns	
F-CE Pulse Width	t _{elen}	70		ns	
$F - \overline{RP} V_{HH}$ Setup to $F - \overline{CE}$ Going High	t _{phthen}	100		ns	
$F \cdot \overline{WP} V_{IH}$ Setup to $F \cdot \overline{CE}$ Going High	t _{shen}	100		ns	
F-VPP Setup to F-CE Going High	t _{vpEH}	100		ns	
Address Setup to F-CE Going High	t _{aven}	50		ns	*3
Data Setup to F-CE Going High	t _{dveh}	50		ns	*3
Data Hold from F-CE High	t _{EHDX}	0		ns	
Address Hold from F-CE High	t _{ehax}	0		ns	
F-WE Hold from F-CE High	t _{enwh}	0		ns	
F-CE Pulse Width High	t _{EHEL}	25		ns	
F-CE High to F-RY/BY Going Low	t _{ehrl}		100	ns	
Write Recovery before Read	t _{ehgl}	0		ns	
F-V _{PP} Hold from Valid SRD, F-RY/BY High Z	t _{ovvi}	0		ns	
F·RP V _{HH} Hold from Valid SRD, F·RY/BY High Z	t _{qvPH}	0		ns	
F-WP VIH Hold from Valid SRD, F-RY/BY High	t _{qvsl}	0		ns	
F-BYTE Setup to F-CE Going High	t _{fveh}	50		ns	
F-BYTE Hold from F-CE High	t _{ehfv}	100		ns	

Notes) *2. Read timing characteristics during block erase and word/byte write operations are the same as during read-only operations. Refer to AC Characteristics for Read Cycle.

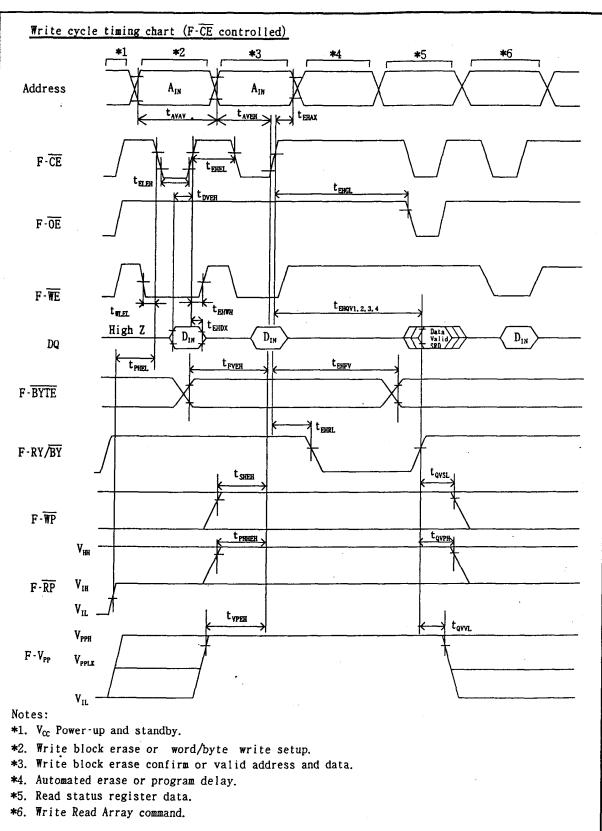
*3. Refer to Section 5. Flash Memory Command Definition for valid AIN and DIN for block erase or word/byte write.


Block Erase and Word/Byte Write Performance

		$(T_a = -25\%)$	C to +8	5℃, V _α	= 2.7 V	to 3.6 V)
			V _{pp} = 2	2.7 V to		
Sym.	Para	neter	Min.	Typ. (*4)	Max.	Unit
t _{wHqv1}	Word/Byte	32K-word Block		55		μs
t _{enqv1}	Write Time	/64K-byte Block				<i>F</i> -
		4K-word Block		60		μs
		/8K-byte Block				
	Block Write	32K-word Blcok		1.8		S
	Time (at word mode)	4K-word Block		0.3		
	Block Write	64K-byte Block		3.6		s
	Time (at byte mode)	8K-byte Block		0.6		5
t _{whqv2}	Block Erase	32K-word Block		1.2		s
t _{enqv2}	Time	64K-byte Block		1.4		
		4K-word Block		0.5		s
		8K-byte Block		0.0		
t _{whRZ1}	Word/Byte Write Sus	pend		7.5	8.6	μs
t _{enrzi}	Latency Time to Read			1.5	0.0	
t _{wHRZ2}	Erase Suspend Laten			19.3	23.6	μs
t _{ehrz2}	to Read			19.5	20.0	μ.


Notes) *4. Reference values at $T_a = +25^{\circ}C$ and $V_{cc}=3.0V$, $V_{pp}=3.0V$.

*5. Excludes system-lebel overhead.



LRS1329

L R S 1 3 2 9

.

•

.

	C to +85	5℃, V _α	= 2.7V	to 3.6 V)
Parameter	Sym.	Min.	Max.	<u>Unit</u>	
$F \cdot \overline{RP}$ Pulse Low Time (If $F \cdot \overline{RP}$ is tied to Vcc, this specification is not applicable.)	t _{plph}	100		ns	
F-RP Low to Reset during Block Erase or Write	t _{PLRZ}		23.6	μs	*1, 2
$F \cdot V_{cc}$ 2.7V to $F \cdot \overline{RP}$ High	t _{vpH}	100		пѕ	*3
 Notes)*1. If F-RP is asserted while a block erase or executing, the reset will complete with 100 *2. A reset time, t_{PROV}, is required from the lat high until outputs are valid. *3. When the device power-up, holding F-RP low been in predefined range and also has been 	Ons. er of F-R' w minimum	Y/BY goin 100ns is	g High Z	of $F \cdot \overline{RP}$	
AC Waveform for Reset Operation					
High Z F-RY/BY (R) V _{oL}					
$V_{IH} = V_{IH}$ $F - \overline{RP} (P) = V_{IL} = t_{PLPH}$ (A) Reset Durin	ng Read Ar	ray Mode			.
High Z $F-RY/\overline{BY}(R)$ V_{oL} V_{IH}	<u></u>				
$F - \overline{RP} (P)$ V_{IL} (B) Reset Durin	ng Block E	rase or W	ord/Byte	Write	
2.7V F-V _{CC} V _{IL} V _{IR}					

13. SRAM AC Electrical Characteristics

SRAM AC Test Conditions

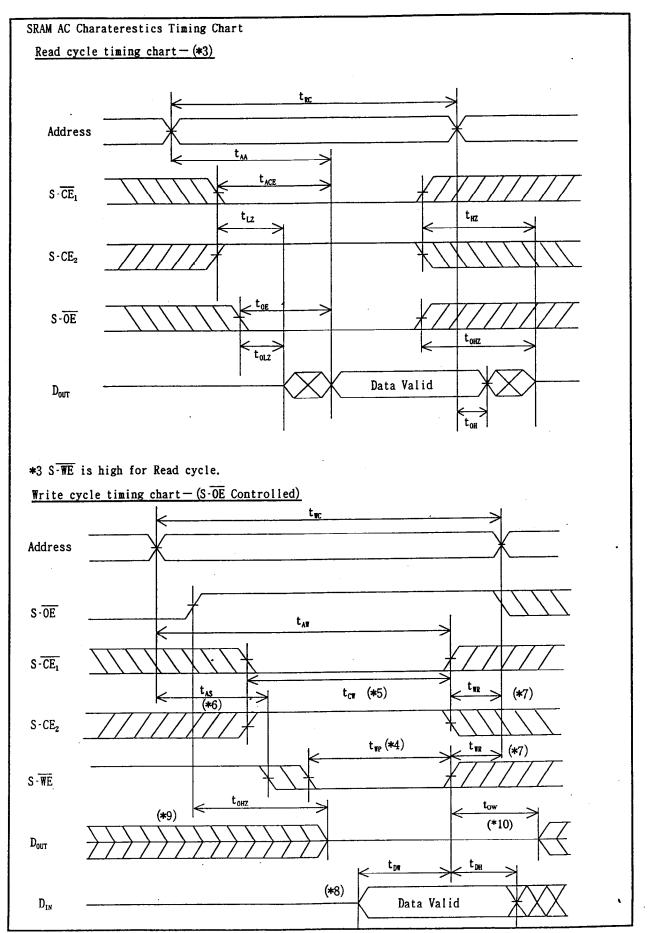
Input pulse level	0.4 V to 2.2 V
Input rise and fall time	5 ns
Input and Output timing Ref. level	1.5 V
Output load	$1TTL+C_{L}(30pF)$ (*1)

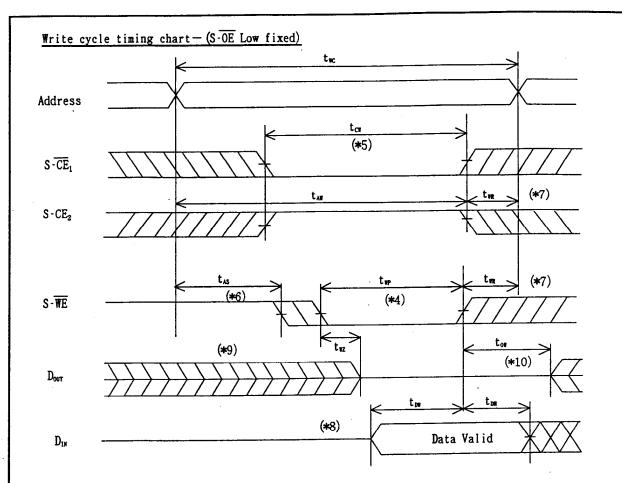
Note) *1. Including scope and jig capacitance.

Read Cycle

 $(T_a = -25 \ C \ to \ +85 \ C$, $V_{cc} = 2.7 \ V \ to \ 3.6 \ V$)

			-		
Parameter	Sym.	Min.	Max.	Unit	
Read Cycle Time	t _{RC}	85		ns]
Address access time	t _{AA}		85	ns	
Chip enable access time $(S \cdot \overline{CE_1})$	t _{ACE1}		85	ns	
$(S - CE_2)$	t _{ACE2}		85	ns	Ì
Output enable to output valid	t _{oe}		40	ns	
Output hold from address change	t _{on}	10		ns	
$\overline{S - \overline{CE}_1}, \overline{S} - \overline{CE}_2$ Low $(\overline{S} - \overline{CE}_1)$	t _{LZ1}	10		ns	*2
to output active (S–CE ₂)	t _{LZ2}	10		ns	*2
S-OE Low to output active	toLz	5		ns	*2
$\overline{S - \overline{CE_1}}$, $\overline{S - CE_2}$ High to $(\overline{S - \overline{CE_1}})$	t _{HZ1}	-0	25	ns	*2
output in High impedance (S-CE ₂)	t _{HZ2}	0	25	ns	*2
S-OE High to output in High impedance	toHz	0	25	ns	*2

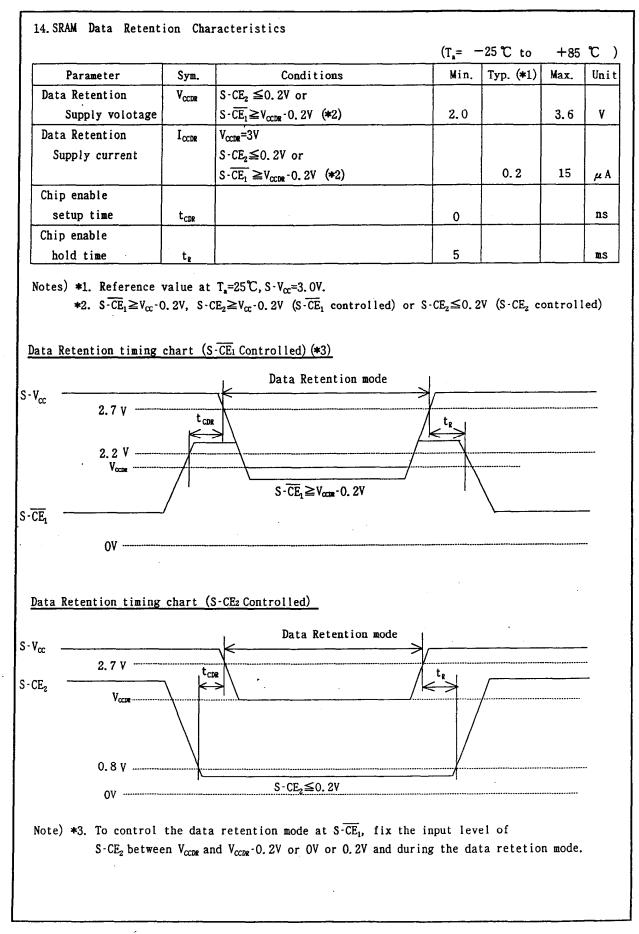

Write Cycle


 $(T_a = -25$ °C to +85 °C , $V_{cc} = 2.7$ V to 3.6 V)

-			
Sym.	Min.	Max.	Unit
t _{wc}	85		ns
t _{cr}	7 0		ns
t _{AW} ·	70		ns
t _{AS}	0		ns
twp	55		ns
twe	0		ns
t _{DW}	35		ns
t _{DH}	0		ns
tow	5		ns
t _{wz}	0	25	ns
	twc t _{CW} t _{AW} t _{AS} twp twp t _{DW} t _{DH} t _{OW}	t_{wc} 85 t_{CW} 70 t_{AW} 70 t_{AS} 0 t_{WP} 55 t_{WP} 0 t_{DW} 35 t_{DH} 0 t_{OW} 5	t_{wc} 85 t_{CW} 70 t_{AV} 70 t_{WP} 55 t_{DV} 35 t_{DH} 0 t_{OW} 5

*2. Active output to High impedance and High impedance to output active tests specified for a ± 200 mV transition from steady state levels into the test load.

LRS1329



Notes)

- *4. A write occurs during the overlap of a low $S-\overline{CE_1}$, a high $S-\overline{CE_2}$ and a low $\overline{S-WE}$, A write begins at the latest transition among $\overline{S-CE_1}$ going low, $S-\overline{CE_2}$ going high and $\overline{S-WE}$ going low.
- A write ends at the earliest transition among $S \overline{CE}_1$ going high, $S CE_2$ going low and $\overline{S - WE}$ going high. two is measured from the beginning of write to the end of write. *5. to is measured from the later of $\overline{S - CE_1}$ going low or $S - CE_2$ going high
 - to the end of write.
- *6. the is measured from the address valid to the beginning of write.
- *7. two is measured from the end of write to the address change.
- *8. During this period, DQ pins are in the output state, therefore the input signals of opposite phase to the outputs must not be applied.
- *9. If $S \cdot \overline{CE}_1$ goes low or $S \cdot CE_2$ goes high simultaneously with $S \cdot \overline{WE}$ going low or after $S \cdot \overline{WE}$ going low, the outputs remain in high impedance state.
- *10. If $S \overline{CE_1}$ goes high or $S \overline{CE_2}$ goes low simultaneously with $S \overline{WE}$ going high or $S \overline{WE}$ going high, the outputs remain in high impedance state.

L R S 1 3 2 9

LRS1329

15. Notes

This product is a stacked CSP package that a 16M(x8/x16) bit Flash Memory and a 2M(x8) bit SRAM are assembled into.

Supply Power

Maximum difference (between $F \cdot V_{CC}$ and $S \cdot V_{CC}$) of the voltage is less than 0.3V.

Power Supply and Chip Enable of Flash Memory and SRAM

 $S \cdot \overline{CE_1}$ should not be LOW and $S \cdot CE_2$ should not be HIGH when $F \cdot \overline{CE}$ is LOW simulataneously.

If the two memories are active together, possibly they may not operate normally by interference noises or data collision on DQ bus.

Both F-V_{cc} and S-V_{cc} are needed to be applied by the recommended supply voltage at the same time except SRAM data retention mode.

Power UP Sequence

When turning on Flash memory power supply, keep $F-\overline{RP}$ LOW. After $F-V_{cc}$ reaches over 2.7V, keep $F-\overline{RP}$ LOW for more than 100nsec.

Device Decoupling

The power supply is needed to be designed carefully because one of the SRAM and the Flash Memory is in standby mode when the other is active. A careful decoupling of power supplies is necessary between SRAM and Flash Memory. Note peak current caused by transition of control signals ($F-\overline{CE}$, $S-\overline{CE}_1$, $S-\overline{CE}_2$).

LRS1329

16. Flash Memory Data Protection

Noises having a level exceeding the limit specified in the specification may be generated under specific operating conditions on some systems.

Such noises, when induced onto $F-\overline{WE}$ signal or power supply may be interpreted as false commands, causing undesired memory updating.

To protect the data stored in the flash memory against unwanted overwriting, systems operating with the flash memory should have the following write protect designs, as appropriate:

1) Protecting data in specific block

By setting a $F \overline{WP}$ to low, only the boot block can be protected against overwriting. Parameter and main blocks cannot be locked.

System program, etc., can be locked by storing them in the boot block.

When a high voltage is applied to $F \cdot \overline{RP}$, overwrite operation is enabled for all blocks. For further information on setting/resetting of block bit, and controlling of $F \cdot \overline{WP}$ and $\overline{F \cdot RP}$, refer to the specification. (See 5. Command Definitions P.5)

2) Data protection through Vpp

When the level of Vpp is lower than VPPLK (lockout voltage), write operation on the flash memory is disabled. All blocks are locked and the data in the blocks are completely write protected.

For the lockout voltage, refer to the specification. (See Chapter 11. DC Characteristics P.10)

Data protection during voltage transition

1) Data protection thorough $F \cdot \overline{RP}$

When the $F \cdot \overline{RP}$ is kept low during power up and power down sequence, write operation on the flash memory is disabled, write protecting all blocks.

For the details of $F \cdot \overline{RP}$ control, refer to the specification. (See chapter 12. Flash Memory AC Electrical Characteristics)

LRS1329

17. Design Considerations

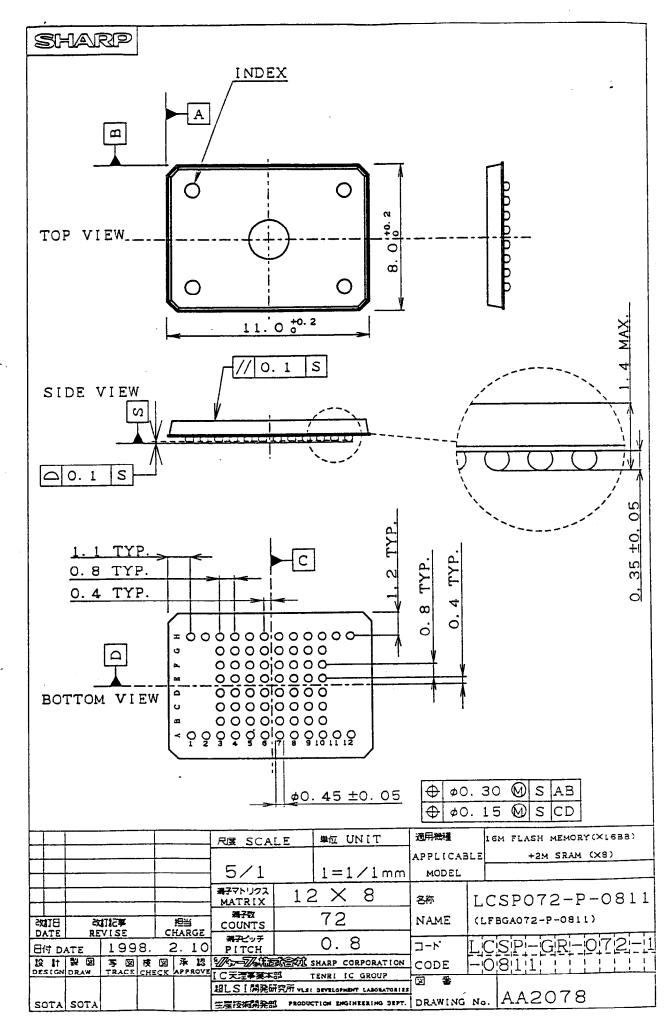
1. Power Supply Decoupling

To avoid a bad effect to the system by flash memory power switching characteristics, each device should have a 0.1μ F ceramic capacitor connected between its V_{CC} and GND and between its V_{PP} and GND. Low inductance capacitors should be placed as close as possible to package leads.

2. V_{PP} Trace on Printed Circuit Boards

Updating the memory contents of flash memories that reside in the target system requires that the printed circuit board designer pay attention to the V_{PP} Power Supply trace. Use similar trace widths and layout considerations given to the V_{CC} power bus.

3. The Inhibition of Overwrite Operation


Please do not execute reprogramming "0" for the bit which has already been programed "0". Overwrite operation may generate unerasable bit. In case of reprogramming "0" to the data which has been programed "1".

Program "0" for the bit in which you want to change data from "1" to "0".
Program "1" for the bit which has already been programmed "0".

For example, changing data from "1011110110111101" to "1010110110111100" requires "111011111111110" programming.

4. Power Supply

Block erase, full chip erase, word/byte write and lock-bit configuration with an invalid V_{PP} (See 11. DC Characteristics) produce spurious results and should not be attempted. Device operations at invalid Vcc voltage (see 11. DC Characteristics) produce spurious results and should not be attempted.

