SHARP

SM5K6

DESCRIPTION

The SM5K6 is a CMOS 4-bit single-chip microcomputer incorporating 4-bit parallel processing function, serial interface function, ROM, RAM, 10bit A/D converter and timer/counters. It provides five kinds of interrupts and 8 levels subroutine stack. Being fabricated through CMOS process, the chip requires less power and available in a small package : best suitable for low power controlling, compact equipment like a precision charger.

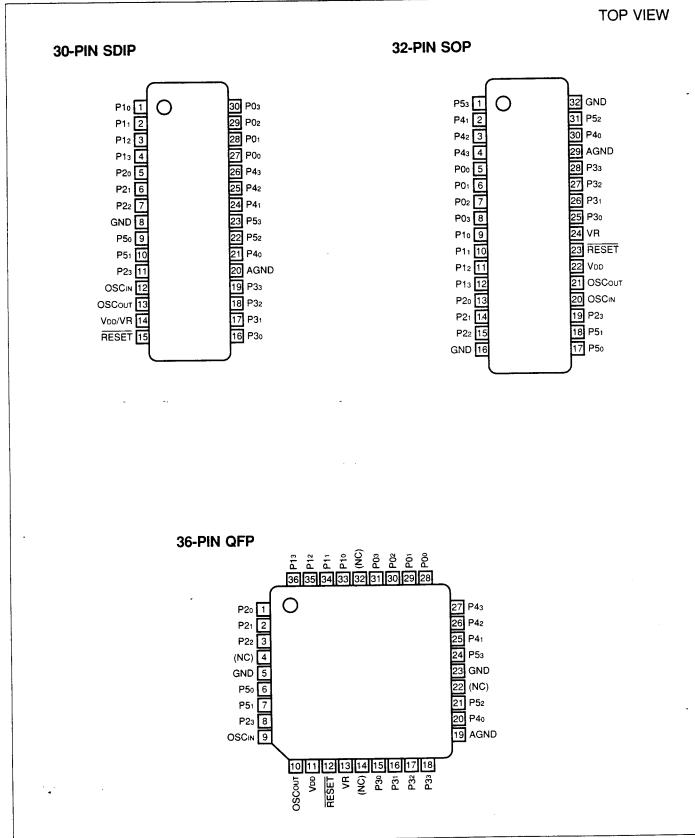
FEATURES

- ROM capacity : 4 096 x 8 bits
- RAM capacity : 256 x 4 bits
- Instruction sets : 52
- Subroutine nesting : 8 levels
- I/O port :

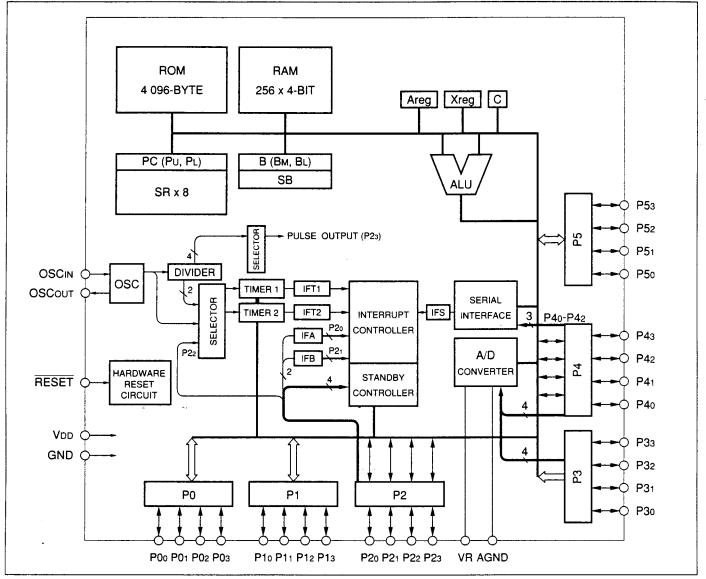
input 4

input/output 20

 Interrupts : Internal interrupt x 3 (2 timers, 1 serial interface) External interrupt x 2 (2 external interrupt inputs)


- A/D converter : Resolution 10 bits
 - Inputs channels 8
- Timer/counter : 8 bits x 2
- Serial interface : 8 bits synchrounous x 1
- Watch dog timer : 8 bits x 1 (also used as timer 2)
- Built-in main clock oscillator for system clock
- Signal generation for real time clock
- Built-in 15 stages divider for real time clock
- Instruction cycle time :
 - 1 µs (4 MHz, at 5 V ± 10%)
 - 4 µs (4 MHz, at 2.0 to 5.5 V)
- Large current output pins (LED direct drive) : 8
- Buzzer output
- Supply voltage : 2.0 to 5.5 V

4-Bit Single-Chip Microcomputer (Controller With 10-Bit A/D Converter)


• Packages :

30-pin SDIP (SDIP030-P-0400) 32-pin SOP (SOP032-P-0525) 36-pin QFP (QFP036-P-1010)

PIN CONNECTIONS

BLOCK DIAGRAM

Nomenciature

Areg	: A register (Accumulator)	PC	: Program counter
ALU	: Arithmetic logic unit	RAM	: Data memory
В	: RAM address register	ROM	: Program memory
С	: Carry latch flag	SB	: SB register (Stack B-reg)
IFA, IFB, IFS	: Interrupt request flag	SR	: Stack register (Stack PC)
IFT1, IFT2		Xreg	: X register (Sub accumulator)
OSC	: System clock oscillator		

P0, P1, P2 : I/O access

•

P3, P4, P5

PIN DESCRIPTION

PIN NAME	I/O	FUNCTION
P0 ₀ -P0 ₃	1/0	Parallel input/output : Direction of pins can be set in units of 4 bits. When set at output,
FU0-FU3		each pin serves as a drive with a 15 mA (Typ.) current sinking capability.
P10-P13	I/O	Parallel input/output : Direction of pins can be set in units of 4 bits. When set at output,
		each pin serves as a drive with a 15mA (Typ.) current sinking capability
P20	1/0	Input or output (independent) : Direction of this pin can be set independently. Assumes
		external interrupt input or standby release.
P21	1/0	Input or output (independent) : Direction of this pin can set independently. Assumes count
·····	1 10	clock input or standby release.
P2 ₂	1/0	Input or output (independent) : Direction of this pin can be set independently. Assumes
· - 2		external interrupt input or standby release.
P23	I/O	Input or output (independent) : Direction of this pin can be set independently. Assumes
		standby release or buzzer output (divider clock).
P30-P33		Parallel input : Accepts input in units of 4 bits. Also assumes A/D pins.
P40	I/O	Input or output (independent) : Direction of this pin can be set independently. Assumes A/D
		pin or SIO data input.
P41	I/O	Input or output (independent) : Direction of this pin can be set independently. Assumes A/D
· · · ·		pin or SIO data output.
P4₂	1/0	Input or output (independent) : Direction of this pin can be set independently. Assumes A/D
· · · · · · · · · · · · · · · · · · ·		pin or SIO clock I/O.
P43	I/O	Input or output (independent) : Direction of this pin can be set independently. Also
		assumes A/D pin.
P50-P53	1/0	Parallel input/output : Direction of pins can be set in units of 4 bits.
RESET	1	Hardware reset input : Input to this pin resets the microcomputer. For normal run, connect
		0.1 µF (Typ.) across RESET and GND.pins.
QSCIN, OSCOUT	í, O	Main clock circuit pins. Connecting a crystal across these pins completes main clock
		oscillator. The divided-by-4 main clock is used as the system clock.
VDD, GND	-	Power supply input to the microcomputer
VR, AGND	-	A/D converter reference voltage : Connect to VR to VDD pin and AGND to GND pin.

NOTES :

1. Hardware reset sets all I/O pins to input.

2. Input ports and I/O ports programmed as input port are provided with pull-up resistors.

-

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	CONDITIONS	RATING	UNIT
Supply voltage	VDD		-0.3 to +7.0	V
Input voltage	ViN		-0.3 to VDD+0.3	V
Output voltage	Vout		-0.3 to VDD+0.3	V
	Іон	High-level output current (at each output)	4	mA
Max. Output current		Low-level output current (P00-P03, P10-P13)	30	mA
	IOL1	-0.3 to Vbb+0.3T -0.3 to Vbb+0.3High-level output current (at each output)4Low-level output current (P0o-P03, P1o-P13)30Low-level output current (all but P0o-P03, P1o-P13)4High-level output current (all outputs)20Low-level output current (all outputs)120A120A-20 to +70	mA	
	Σюн	High-level output current (all outputs)	-0.3 to Vpp+0.3 -0.3 to Vpp+0.3 4 30 4 20 120	mA
Total output current	\sum IOL	Low-level output current (all outputs)	P1₃) 30 m. ₀-P1₃) 4 m. 20 m. 120 m. −20 to +70 °C	
Operating temperature	TOPR		-20 to +70	°C
Storage temperature	Тята		-55 to +150	°C

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	CONDITIONS	RATING	UNIT	
Supply voltage	VDD		2.0 to 5.5	V	
Instruction quals	.	V _{DD} = 2.0 to 5.5 V	4 to 122	– μs	
Instruction cycle	tcyc	$V_{DD} = 5.0 V \pm 10\%$	1 to 122		
System alcole fragmanes	4	V _{DD} = 2.0 to 5.5 V	250 k to 8.192 k	– Hz	
System clock frequency	fsys	$V_{DD} = 5 V \pm 10\%$	1 M to 8.192 k		
Main clock frequency		V _{DD} = 2.0 to 5.5 V	1 M to 32.768 k		
(OSCIN-OSCOUT)	fosc	$V_{DD} = 5.0 V \pm 10\%$	4 M to 32.768 k	Hz	

DC CHARACTERISTICS

PARAMETER	SYMBOL	(Ta = -20 to 70°C, Typ. va CONDITIONS		MIN.	TYP.	MAX.	UNIT	NOTE	
Input voltage	ViHt			0.8 x VDD		VDD	_ v	1	
	VIL1			0		0.2 x VDD			
	VIH2			0.9 x VDD		VDD	- v	2	
	VIL2			0 0.1 x Vr				2	
Input current	lılı	<u> </u>	VDD = 2.0 to 3.3 V	2	25	90	μA	3	
		$V_{IN} = 0 V$	VDD = 4.5 to 5.5 V	25	70	250			
	Іінт	VIN = VDD	· · · ·			2			
	1L2	$V_{IN} = 0 V$			1	10	μA		
	Іінг	VIN = VDD			1	10		4	
			VDD = 2.0 to 3.3 V	3	15		1	5	
	IOL1	Vo = 1.0 V	VDD = 4.5 to 5.5 V	15	25		1		
			VDD = 2.0 to 3.3 V	0.2	1.5		- mA		
0	IOH1	$V_0 = V_{DD} - 0.5 V$	V _{DD} = 4.5 to 5.5 V	1.0	2.2				
Output current		N 05 N	V _{DD} = 2.0 to 3.3 V	70	600				
	1012	Vo = 0.5 V	VDD = 4.5 to 5.5 V	400	1 000		- μA	6	
			VDD = 2.0 to 3.3 V	200	2 000				
	Юн2	$V_{\rm O} = V_{\rm DD} - 0.5 \ V$	V _{DD} = 4.5 to 5.5 V	1 000	2 400				
	laa	fosc = 2 MHz	V _{DD} = 4.5 to 5.5 V		1 600	3 500	Αμ 	<u>†</u>	
			Vod = 2.0 to 3.3 V		400	1 100			
		fosc = 1 MHz	V _{DD} = 4.5 to 5.5 V		850	1 700		7	
		fosc = 32.768 kHz	VDD = 2.0 to 3.3 V		28	170			
			Vod = 4.5 to 5.5 V		55	220			
	IHALT	fosc = 2 MHz	VDD = 4.5 to 5.5 V		900	1 800			
		fosc = 1 MHz	VDD = 4.5 to 5.5 V		500	1 100			
Supply current		6 00 700 kit la	V _{DD} = 2.0 to 3.3 V		20	75			
		fosc = 32.768 kHz	V _{DD} = 4.5 to 5.5 V		25	120			
			Ceramic OSC mode	V _{DD} = 2.0 to 3.3 V		· · · · ·	3	1	
	ISTOP	Crystal OSC mode	V _{DD} = 2.0 to 5.5 V		20	45	-		
		(32.786kHz)	V _{DD} = 4.5 to 5.5 V		25	65			
	lvr	A/D active	V _{DD} = 2.0 to 3.3 V		180	420	μA	8	
			V _{DD} = 4.5 to 5.5 V		300	650			
		A/D inactive	VDD = 2.0 to 5.5 V			3	μA	9	
	n	Resolution			10		bit		
	Different	ial fosc = 2 MHz	$V_{DD} = VR = 5.0 V$		± 2.5	± 4.0	LSB		
A/D	linearity	$T_{OPR} = 25^{\circ}C$							
conversion	Linoarity	fosc = 2 MHz	$V_{DD} = VR = 5.0 V$		± 3.2	± 5.0			
CUTIVELSIUT	Linearity	TOPR = 25°C							
-	Total err	fosc = 2 MHz	$V_{DD} = VR = 5.0 V$		± 4.0	± 6.0			
	rual en	TOPR = 25°C							

.

•

SHARP

NOTES :

- 1. Applicable pins : P00-P03, P10-P13, P22, P23, P30-P33 (digital input mode), P41, P43 (digital input mode), P50-P53
- 2. Applicable pins : OSCIN, RESET, P20, P21, P40, P42 (digital input mode)
- 3. Applicable pins : P40-P43, P30-P33 (digital input mode), RESET, P20-P23, P50-P53, P00-P03, P10-P13
- 4. Applicable pins : P3o-P33, P4o-P43 (A/D mode)
- 5. Applicable pins : P0o-P03, P1o-P13 (High current port)
- 6. Applicable pins : P20-P23, P40-P43, P50-P53 (output mode)
- 7. Non-load condition (A/D conversion disabled) MAX. V_DD = 5.5 V (or 3.3 V), T_{OPR} = -20 $^{\circ}\text{C}$
- 8. Current into VR at A/D conversion mode (run enable status)
- 9. Current into VR at Non-A/D conversion mode (run disable status)

SYSTEM CONFIGURATION A Register and X Register

The A register (accumulator : Acc) is a 4-bit general purpose register. The register is mainly used in conjunction with the ALU, C flag and RAM, to transfer numerical_value_and data to perform various operations. The A register is also used to transfer data between input and output pins.

The X register (auxiliary accumulator) is a 4-bit register and can be used as a temporary register.

It loads contents of the A register or its content is transferred to the A register.

When the table reference instruction PAT is used, the X and A registers load ROM data.

A pair of A and X registers can accommodate 8 bit data.

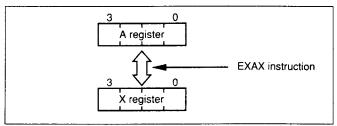
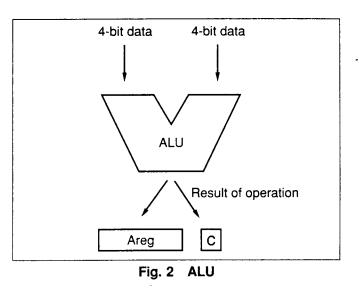
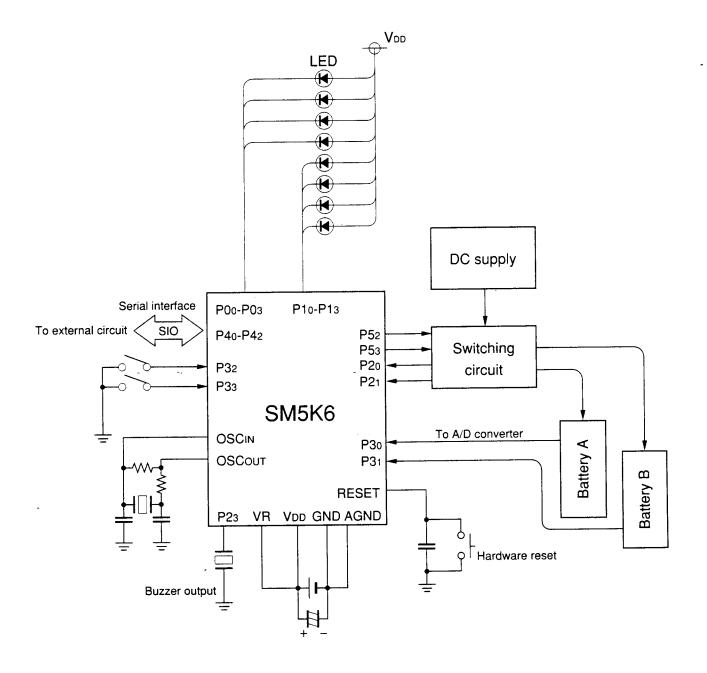



Fig. 1 Data Transfer Example between Register and X Register

Arithmetic and Logic Unit (ALU) and Carry Signal Cy

The ALU performs 4-bit parallel operation.


The ALU operates binary addition in conjunction with RAM, C flag and A register. Cy is the symbol for carry signal and not for C flag.

The C flag latches the carry-over as the result of arithmetic instruction. The flag can be set/clear using SC and RC instructions.

The content of C flag can be tested using the TC instruction.

SYSTEM CONFIGURATION EXAMPLE

Versatile charger

Singlechip LH7xxxx '790 '789 '791 SMxxxx 'K series MCU Microcontroller MPU Microprocessor ARM Advanced RISC Machines Databank LCD Controller LCD Driver Controllers Processors Portable Low Power Low Voltage High Performance Power curve MIPS MIPS/Watt Execution Cycle Multiplier High Speed Compact Handheld System on Chip System Integration Chip Integration Integration Superchip Standard Cell Core Core based IC VHDL Verilog Synthesis Chip on Board COB Chip on Flex COF Device on Board DOB Power Supply Controller Handy Products Development Tools Board Support Software Tools Tools 2.10 Software Support Emulators Evaluation Boards ICE In-Circuit Emulators ROM ICE SME Series Programmable User Configurable RTOS Real Time Operating Systems Third Party Support Software Hardware Yokogawa Digital Cosmic Compiler C Language C Like Assembler Linker Debugger Debug A/D D/A DAC Analog Digital 10-bit 4-bit 8-bit 16-bit 32-bit Address bus Data Bus