Silan
Semiconductors

TONE/PULSE DIALER

DESCRIPTION

The SC91214/15 Series is a single-chip, silicon gate, CMOS integrated circuit with an on-chip oscillator for a 3.58 MHZ crystal or ceramic resonator. It provides a dialing pulse (DP) or dual tone multi-frequency (DTMF) dialing. A standard 4×4 matrix keyboard can be used to support either DP or DTMF modes.

FEATURES

* One touch redial operation
* Tone/Pulse switchable
* 32 digit capacity for redialing
* Automatic mixed redialing (last number redial) of pulse to DTMF with multiple automatic access pauses

* PABX auto-pause is 2.2 seconds
* DTMF Timing:

Manual dialing: minimum duration for bursts and pauses
Redialing: calibrated timing

* Hands-Free control function
* Wide operating voltage range: 2 V to 5.5 V
* Key-in beep tone output
* Digits dialed manually after redialing are cascadable and stored as additional digits for the next redialing
* Uses inexpensive ceramic resonator (3.58 MHZ)
* Two versions for different telephone systems
* Built-in power up reset circuit

ORDERING INFORMATION

SC91214/15A	DIP-16 Package
SC91214/15B	DIP-18 Package
SC91214/15C	DIP-18 Package
SC91214/15D	DIP-20 Package

* Four extra function keys: flash, pause, redial and DP or DTMF mixed dialing
* 4×4 (or 2×8) keyboard can be used
* Low standby current
\qquad

Semiconductors

PIN CONFIGURATIONS

a. DIP-16 Package

—— HANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTD
Rev: $1.0 \quad 2001.01 .03$

Semiconductors

SC91214/15 SERIES

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

(Tamb $=25^{\circ} \mathrm{C}$, All voltage referenced to VSS, unless otherwise specified)

Characteristic	Symbol	Value	Unit
Power Supply Voltage	VDD	6.0	V
Input Voltage	VIN	$-0.3 \sim$ VDD +0.3	V
Output Voltage	VouT	$-0.3 \sim$ VDD +0.3	V
Output Voltage (DP, XMIT MUTE)	VouT	1.2	V
Tone Output Current	ITONE	50	mA
Power Dissipation	PD	500	mW
Operating Temperature	Topr	$-25 \sim+70$	${ }^{\circ} \mathrm{C}$
Storage Temperature	Tstg	$-55 \sim+150$	${ }^{\circ} \mathrm{C}$

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to this device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied or intended. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability.
\qquad

Semiconductors

SC91214/15 SERIES

AC ELECTRICAL CHARACTERISTICS
(Top $=25^{\circ} \mathrm{C}, \mathrm{VDD}=3.5 \mathrm{~V}$, VSS $=0 \mathrm{~V}$, fosc $=3.579545 \mathrm{MHz}$, All voltage referenced to VSS , unless otherwise specified)

Parameter	Symbol	Conditions		Min	Typ	Max	Unit	Test KT.	
Operating Voltage	VDD	Tone mode		2.0	--	5.5	V	A	
		Pulse mode		2.0	--	5.5			
Memory Retention Voltage	VMR			1			V	--	
Memory Retention Current	IMR	$V D D=1.0 \mathrm{~V}, \overline{\mathrm{HK}}=\mathrm{VDD}$ All outputs unloaded			0.05	0.4	$\mu \mathrm{A}$	--	
Operating Current	IDDP	Pulse mode	All outputs unloaded		0.32	1.0	mA	A	
	IDDT				0.6	2.0			
Standby Current	ISO	$\mathrm{HK}=\mathrm{VDD}=1.5 \mathrm{~V}$	All outputs unloaded, no key selected		0.03	0.05	$\mu \mathrm{A}$	A	
		$\overline{\mathrm{HK}}=\mathrm{VSS}$			0.5	10			
Input Voltage	VIH			0.8		1	VDD		
	VIL			0		0.2			
$\overline{\mathrm{R} 1}-\overline{\mathrm{R} 4}$ Input Current	IR				115		$\mu \mathrm{A}$	C	
Tone out Voltage	Voc	Column	$\mathrm{V} D \mathrm{D}=3.5 \mathrm{~V}, \mathrm{RL}=5 \mathrm{~K}$	584	730	876	mVp-p	D	
	Vor	Row		456	570	684			
- ${ }^{\text {HFI }}$ Pull Low Current	\| IHFI		VDD $=3.5 \mathrm{~V}$ (Note 1) HFI pin connected to 0 V			5		$\mu \mathrm{A}$	B
HFO Drive Current	\| IOH1		$\begin{aligned} & \mathrm{VDD}=3.5 \mathrm{~V} \\ & \mathrm{VOH}=\mathrm{VDD}-0.4 \mathrm{~V} \end{aligned}$		0.4	2		mA	B
$\frac{\text { HFO, KT , MODEOUT }}{\frac{\text { XMITMUTE Sink Current }}{}}$	IOL1	$\begin{aligned} & \mathrm{VDD}=3.5 \mathrm{~V} \\ & \mathrm{VOL}=0.4 \mathrm{~V} \end{aligned}$		0.9	5.3		mA	B	
DP Sink Current	IOL2	VDD $=3.5 \mathrm{~V}, \mathrm{VOL}=0.4 \mathrm{~V}$		1.1	5.3		mA	B	
Distortion	DIS\%	* see note below			1	5	\%		

*Note: \quad DIS $\%=\frac{100 X\left(\mathrm{~V}_{1}{ }^{2}+\mathrm{V}_{2}{ }^{2}+\cdots+\mathrm{V}_{\mathrm{n}}{ }^{2}\right)^{1 / 2}}{\left(\mathrm{~V}_{\mathrm{IL}}{ }^{2}+\mathrm{V}_{\mathrm{IH}}{ }^{2}\right)^{1 / 2}}$

1. $\mathrm{V} 1 \ldots \mathrm{Vn}$ are the intermediation or the harmonic frequencies in the 500 Hz to 3400 Hz band.
2. VIL^{2} and VIH are the individual frequency components of the DTMF signal.

AC CHARACTERISTICS
($\mathrm{Top}=25^{\circ} \mathrm{C}, \mathrm{VDD}=3.5 \mathrm{~V}, \mathrm{VSS}=0 \mathrm{~V}$, fosc $=3.579545 \mathrm{MHz}$, All voltage referenced to VSS, unless otherwise specified)

COMPARISONS OF SPECIFIED VS ACTUAL TONE FREQUENCIES (Fosc=3.579MHz)

R/C	Spec.	Actual	Error (\%)	Unit
$\overline{\mathrm{R} 1}$	697	699.1	+0.31	Hz
$\overline{\mathrm{R} 2}$	770	771.5	+0.19	Hz
$\overline{\mathrm{R} 3}$	852	852.3	+0.03	Hz
$\overline{\mathrm{R} 4}$	941	942.0	+0.10	Hz
$\overline{\mathrm{C} 1}$	1,29	$1,215.7$	+0.57	Hz
$\overline{\mathrm{C} 2}$	1,336	$1,331.7$	-0.32	Hz
$\overline{\mathrm{C} 3}$	1,477	$1,471.9$	-0.35	Hz

[^0]Semiconductors

KEYBOARD ASSIGNMENT

1) */T: In PULSE mode this key works as Pulse \rightarrow DTMF key (T key). In DTMF mode the key works as * key.
*/T key will occupy one memory digit in either use.
2) F1: Flash key. The break time is 297 ms or 96 ms (SC91214/15 respectively)
3) F2: Flash key for break time 640 ms
4) P: Pause key (2.2 seconds)
5) RD: One key redial key
6) EMn: One touch memory key
7) \#: In PULSE mode this key input is neglected. In DTMF mode this key works as \# key.

Semiconductors
PIN DESCRIPTION

Pin No.				Pin Name	1/0	Description		
SC91214A	SC91214B	SC91214C	SC91214D					
3					1	Oscillator Input and Output pins. The time base for the SC91214/15 is a crystal controlled on-chip oscillator, which is completed by connecting a 3.58 MHz crystal or ceramic resonator between the OSCI and OSCO pins.		
2	2	3	3	MODE IN	I, Z	TRI-STATE mode select pin. There ate two versions of the SC91214/15 as follows: a. SC91215 Series is for European and American systems.		
						MODE Tone/ IN Pulse	Dial Rate	M/B Ratio
						VDD Pulse	10pps	2/3
						VSS Tone	--	--
						Floating Pulse	10pps	1/2
						b. The SC91214 Seri system.	is for t	apanese
						MODE Tone/ IN Pulse	Dial Rate	M/B Ratio
						VDD Pulse	10pps	1/2
						VSS Tone	--	--
						Floating Pulse	20pps	1/2
						The mode selectio tone/pulse dialing as In the PULSE mod checked, along with first key entry.	in is ch dig the di make/b	cked for entery. rate is ratio, at
1	1	2	2	HK	1	Hook switch input This inverter input the hook switch represented by a VD		state of Hook" is

> (To be continued)

Semiconductors
(Continued)

Pin No.				Pin Name	1/0	Description				
SC91214A	SC91214B	SC91214C	SC91214D							
(N.A.)	10	(N.A.)	11	KT	0	Key-in tone output This N-channel open drain pin sends out a "beep" tone for each PULSE mode key entry, along with entries of accepted function keys (RD, T, F1 F2, an P keys). The tone output frequency is 437 Hz and tone duration is 23 ms .				
9	11	10	12	DP	0	Dialing pulse output This is an N-channel open drain output. The normal output will be "ON" during break an "OFF" during make in the PULSE DIALING mode.				
(N.A.)	(N.A.)	1	1	HFO	0	Hands-Free Control I/O pins These pins enable and disable the Hands-Free control function. When input pin HFI goes low, the Hands-Free Control state is toggled on. The status of the Hands-Free control state is listed in the following table:				
		18	20	HFI	1	Hook SW	HFO	Input	HFO	Dialing?
							Low	$\overline{\mathrm{HFI}} \downarrow$	High	Yes
						On Hook	High	$\overline{\mathrm{HFI}} \downarrow$	Low	No
						Off Hook	High	$\overline{\mathrm{HFI}} \downarrow$	Low	Yes
						On Hook		Off Hook	Low	Yes
						Off Hook	Low	On Hook	Low	No
						Off Hook	High	On Hook	High	Yes

(To be continued)

Semiconductors
(Continued)

Pin No.				Pin Name	I/O	Description
SC91214A	SC91214B	SC91214C	SC91214D			
7	7	8	8	TONE	0	Tone dialing output When a valid key-press is detected in the DTMF mode, appropriate low group and high group, frequencies the dual tone output. TONE output is in the "OFF" state in PULSE mode.
8	8	9	9	XMITMUTE	0	Dialing transmission mute output This is an N-channel open drain output. The XмItmute is normally "OFF". During pulse or DTMF dialing this output is "ON".
(N.A.)	9	(N.A.)	10	MODE OUT	0	Mode output pin This is an N-channel, open drain output. It is "ON" during tone output and "OFF" during pulse output.
13	15	14	16	R1		Keyboard pins
14	16	15	17	R2		This input serves as the interface to an XY
15	17	16	18	R3		oard, the input from the fourth column,
16	18	17	19	R4		C4 , should be connected to VSS.
10	12	11	13	C1		
11	13	12	14	C2		
12	14	13	15	C3		
6	6	7	7	VDD		Power supply pins
5	5	6	6	VSS		These devices are designed to operate from 2.0 V to 5.5 V .

SC91214/15 SERIES

KEYBOARD OPERATION

- Symbol definitions:

In the description below, signals are defined in terms of the key or switch, which is activated.

OFF Hook	means the phone is off the hook.
ON Hook	means the phone is on the hook.
D1	represents for the first digit dialed in a string of digits.
Dn (Dk)	represents for the last digit dialed in a string of digits.
$\mathrm{Dn}+1$	represent for the beginning of a new string of digits.
Dn+m	represents for the last digit in a new string of digits.
$\overline{\mathrm{HFI}} \downarrow$	represents for the switch that activates the HANDS-FREE DIALING mode going low.
*/T	is the Pulse-to-DTMF key.
RD	is the Redial key.
0	is the Zero key.
P	is the Pause key.
F	is the Flash key.

- Recommended Operation

1. PULSE mode operation
a. Off Hook D1 ... Dn

PULSE mode is defined as the INTIAL mode, provided the first keyboard input is not the ${ }^{* / T}$ key following the Off Hook condition and the mode selection pin is floating (MODE IN = VDD or floating).
b. On Hook
 D1 Dn

Pulse mode is defined as the INITIAL mode, provided the key input D1 is not ${ }^{*} / T$ while the mode selection pin is VDD or floating. The chip will pause for 824 ms automatically after it detects an Off-Hook condition or if the \square key is depressed. It then proceeds with pulse or DTMF dialing if any keys have been depressed.

The dialing rate or make/break ratio is decided at the first key entry by checking the MODE IN status and will not be altered. The MODE IN status can only switch the DIALING mode from PULSE to DTMF after the first key ectry.
2. DTMF mode operation
a. Off Hook D1 $\ldots \quad$ Dn or On Hook $\overline{\mathrm{HFI}} \downarrow \square \mathrm{D} 1 \ldots, \mathrm{Dn}$

DTMF mode is defined as the INTIAL mode if the mode selection pin MOD IN is VSS.
HANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTD

Semiconductors

SC91214/15 SERIES

b. Off Hook D1... Dn or On Hook $\overline{\text { HFI }} \downarrow>$ *TT D1 \ldots Dn

The INITIAL mode is PULSE mode if the mode selection pin, MODE IN, is VDD or floating. The ${ }^{*} / T$ key can switch the DIALING mode to TONE mode. Unlike NORMAL mode switching, the */T key entry, as the first key pressed, will not produce any pause time, there are only 31 digits of redial memory available in the buffer to be used for operation a and b, since the mode switching key, ${ }^{*} / T$, will occupy one digit of space.
3. Manual dialing with automatic access pause
a. Off Hook O P D1 \ldots Dn

Pause key entries can be accepted and stored and stored in the redial memory. Each is stored as a digit.
Each key-in will provide a pause of 3.57 seconds, depending on which model is being used.
4. Redial
a. Off Hook RD or On Hook $\mathrm{HFI} \downarrow \mathrm{RD}$

Up to 32 digits (in PULSE mode) or 31 digits (in TONE mode) can be dialed using the RD key. The RD key is disabled while PULSE or TONE signals are being transmitted. Redial will also be inhibited if the last number dialed exceeds 32 digits because the redial memory can only hold 32 digits.

After pressing the RD key, digits may be added to the number in redial memory. When finished dialing, the redial memory will contain the original digits, plus the digits dialed after pressing $R D$. each time the redial key is pressed, the stored number will be dialed exactly the same as it was previously, regardless of the status of the MODE IN pin.
5. TONE/PULSE switch operation

The mode selection pin is always checked for TONE or PULSE mode key entry. Dialing can be switched from PULSE to TONE mode, but not from TONE to PULSE mode. Switching the MODE IN pin to Vss will cause the chip to store a ${ }^{*} / \mathrm{T}$ digit prior to first tone digit in the redial memory and will automatically insert a 2.2 second pause before the tone digits are dialed out. After the mode has been switched, the status of the mode selection pin will no longer be checked. Therefore, it will not be possible to switch from TONE to PULSE mode.

Semiconductors

SC91214/15 SERIES

b.

PULSE mode is initially defined with the mode selection pin, MODE IN, equal to VDD or floating. At this time, the mode can be switched to DTMF by pressing the ${ }^{* / T}$ key. DTMF mode will being as soon as the last pulse has been transmitted. In this mode, $\mathrm{Dn}+1$ through $\mathrm{Dn}+\mathrm{m}$ are sent through the TONE OUT pin as DTMF signals. If a $\quad \mathrm{P}$ key entry is contained in the series of digits before or after the ${ }^{* / T}$ entry, or the MODE IN switch is depressed, 2.2 second pause will be added to the automatically inserted pause time, which is also 3.57 seconds. Both of the above switching modes can store as many as 31 digits in the redial memory.
6. One-key redialing

Off-Hook	D1	...	Dn	RD	or	On Hook	HFI \downarrow	D1		Dn	

If the dialing of D 1 to Dn is finished, pressing RD will cause the pulse dialing pin to go low for 67 seconds of break time and an 824 ms pause will automatically be added. If the pulses of the number dialed with D1 to Dn have not finished, the pressing of the redial key will be ignored.
7. Flash dialing

The flash key emulate quick On-Off Hook operations. Pressing the flash keys, F1 or F2, will cause a break of 96 ms or 640 ms (or, 297 ms or 640 ms , depending on the mode) on the DP output pin. Then, it pauses for 824 ms and continues dialing the digits, D 1 to Dn . These digits are then stored in the redial memory.
Each time the flash key is pressed, the redial memory will be cleared to store a new entry. In addition, the MODE IN status will be checked again for the setting of the TONE/PULSE DIALING mode.

Similarly, to make sure that the IC is working properly, new flash key inputs will be ignored as long as the digits that were dialed have not finished.

TEST CIRCUIT

TIMING DIAGRAMS
1.Timing diagram in PULSE mode:

2. Timing diagram in TONE mode

(i) Normal dialing

[^1]TIMING DIAGRAMS (Continued)
(ii) After (i), redialing

3. Timing diagram for SWITCHING mode operation:
(i) By mode selection pin switches

[^2]Semiconductors

TIMING DIAGRAM (Continued)
(ii) By */T key entry

TPAU: Pause time (2.2 secs)
4. One key redial (DTMF mode used as example):

TAOBK: Break time (2.2 secs)

Semiconductors

TIMING DIAGRAM (Continued)

Silan
Semiconductors

SC91214/15 SERIES

TYPACAL APPLICATION CIRCUIT

—— HANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTD
Rev: 1.0
2001.01.03

PACKAGE OUTLINE

_ـ HANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTD _ـ

PACKAGE OUTLINE

[^0]: _ - HANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTD \qquad

[^1]: —— HANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTD \qquad

[^2]: __ HANGZHOU SILAN MICROELECTRONICS JOINT-STOCK CO.,LTD

