Sipox

HS3140/SP7514

14-Bit Multiplying DACs

- Monolithic Construction
- 14-Bit Resolution
- 0.003\% Non-Linearity
- Four-Quadrant Multiplication
- Latch-up Protected

■ Low Power - 30mW
■ Single +15V Power Supply

DESCRIPTION...

The SP7514 and HS3140 are precision 14-bit multiplying DACs, that provide four-quadrant multiplication. Both parts accept both AC and DC reference voltages. The SP7514 is available for use in commercial and industrial temperature ranges, packaged in a 20-pin SOIC. The HS3140 is available in commercial and military temperature ranges, packaged in a 20 -pin side-brazed DIP.

SPECIFICATIONS

(Typical @ $25^{\circ} \mathrm{C}$, nominal power supply, $\mathrm{V}_{\text {REF }}=+10 \mathrm{~V}$, unipolar unless otherwise noted)

PARAMETER	MIN.	TYP.	MAX.	UNITS	CONDITIONS
DIGITAL INPUT Resolution 2-Quad, Unipolar Coding 4-Quad, Bipolar Coding Logic Compatibility Input Current	14	Binary Offset Binary CMOS, TTL	± 1	Bits $\mu \mathrm{A}$	Note 1
REFERENCE INPUT Voltage Range Input Impedance	3.25		$\begin{aligned} & \pm 25 \\ & 9.75 \end{aligned}$	$\begin{array}{r} \text { V } \\ \text { KOhms } \end{array}$	Note 2
ANALOG OUTPUT Scale Factor Scale Factor Accuracy Output Leakage Output Capacitance $\mathrm{C}_{\text {Out }} 1$, all inputs high $\mathrm{C}_{\text {OUT }} 1$, all inputs low $\mathrm{C}_{\text {OUT }} 2$, all inputs high $\mathrm{C}_{\text {OUT }}$ 2, all inputs low	75	$\begin{gathered} 100 \\ 50 \\ 50 \\ 100 \end{gathered}$	$\begin{gathered} 225 \\ \pm 1 \\ 10 \end{gathered}$		Note 3 Note 4
STATIC PERFORMANCE Integral Linearity SP7514KN/BN, HS3140-4 SP7514JN/AN, HS3140-3 Differential Linearity SP7514KN/BN, HS3140-4 SP7514JN/AN, HS3140-3 Monotonicity SP7514KN/BN, HS3140-4 SP7514JN/AN, HS3140-3		$\begin{array}{\|} \left\|\begin{array}{c} \pm 0.003 \\ \pm 0.006 \\ \\ \pm 0.003 \\ \pm 0.006 \end{array}\right\| \\ \text { ranteed to } 1 \\ \text { ranteed to } 1 \end{array}$	$\begin{gathered} \pm 0.006 \\ \pm 0.012 \\ \pm 0.006 \\ \pm 0.012 \end{gathered}$ 4 bits 3 bits	$\begin{gathered} \text { \% FSR } \\ \text { \% FSR } \\ \text { \%FSR } \\ \text { \% FSR } \end{gathered}$	Note 5 Note 6
STABILITY Scale Factor Integral Linearity Differential Linearity Monotonicity Temp. Range SP7514JN/KN, HS3140C SP7514AN/BN HS3140B	$\begin{gathered} 0 \\ -40 \\ -55 \end{gathered}$	$\begin{gathered} 4 \\ 0.5 \\ 0.5 \end{gathered}$	$\begin{array}{r} 1.0 \\ 1.0 \\ +70 \\ +85 \\ +125 \end{array}$	ppm FSR/ $/{ }^{\circ} \mathrm{C}$ ppm FSR/ $/{ }^{\circ} \mathrm{C}$ ppm FSR/ $/{ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{C}$	$\left(\mathrm{T}_{\mathrm{MIN}} \text { to } \mathrm{T}_{\mathrm{MAX}}\right)$ $\text { Note } 7 \text { and } 8$
DYNAMIC PERFORMANCE Digital Small Signal Settling Digital Full Scale Settling Reference Feedthrough Error @ 1kHz @ 10kHz Reference Input Bandwidth		$\begin{gathered} 1.0 \\ 2.0 \\ 200 \\ 2 \\ 1 \end{gathered}$		$\begin{array}{r} \mu \mathrm{S} \\ \mu \mathrm{~S} \\ \\ \mu \mathrm{~V} \\ \mathrm{mV} \\ \mathrm{MHz} \end{array}$	$\left(\mathrm{V}_{\text {REF }}=20 \mathrm{Vpp}\right)$
POWER SUPPLY (V_{DD}) Operating Voltage Voltage Range Current Rejection Ratio	+8	$\begin{gathered} +15 \pm 5 \% \\ 0.005 \end{gathered}$	$\begin{array}{r} +18 \\ 2.0 \end{array}$	$\begin{array}{r} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~mA} \\ \% \% \end{array}$	Note 9

SPECIFICATIONS (continued)

(Typical @ $25^{\circ} \mathrm{C}$, nominal power supply, $\mathrm{V}_{\text {REF }}=+10 \mathrm{~V}$, unipolar unless otherwise noted)

PARAMETER	MIN.	TYP.	MAX.	UNITS	CONDITIONS
ENVIRONMENTAL AND MECHANICAL					
Operating Temperature					
SP7514JN/KN	0		+70	${ }^{\circ} \mathrm{C}$	
SP7514AN/BN	-40		+85	${ }^{\circ} \mathrm{C}$	
HS3140-C	0		+70	${ }^{\circ} \mathrm{C}$	
HS3140-B	-55		+125	${ }^{\circ} \mathrm{C}$	
HS3140-B/883	-55		+125	${ }^{\circ} \mathrm{C}$	
Storage Temperature	-65		+150	${ }^{\circ} \mathrm{C}$	
Package					
$\begin{aligned} & \text { SP7514_N } \\ & \text { HS3140 } \end{aligned}$			d DIP		

Notes:

1. Digital input voltage must not exceed supply voltage or go below -0.5 V ; " 0 " $<0.8 \mathrm{~V} ; 2.4 \mathrm{~V}<$ " 1 " $\leq \mathrm{V}_{\mathrm{DD}}$
2. AC or DC; use R6758-1 for fixed reference applications
3. Using the internal feedback resistor and an external op amp. The Scale Factor can be adjusted externally by variable resistors in series with the reference input and/or in series to the internal feedback resistor. Please refer to the Applications Information section
4. At $25^{\circ} \mathrm{C}$; the output leakage current will create an offset voltage at the external op amps output. It doubles every $10^{\circ} \mathrm{C}$ temperature increase.
5. Integral Linearity is measured as the arithmetic mean value of the magnitudes of the greatest positive deviation and the greatest negative deviation from the theoretical value for any given input combination.
6. Differential Linearity is the deviation of an output step form the theoretical value of 1LSB for any two adjacent digital input codes.
7. At $25^{\circ} \mathrm{C}$, the output leakage current will create an offset voltage output. It doubles every $10^{\circ} \mathrm{C}$ temperature increase
8. Using the internal feedback resistor and an external op amp.
9. Use series 470 ohm resistor to limit start-up current.

CHARACTERISTIC CURVES

(Typical @ $+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=+15 \mathrm{VDC}, \mathrm{V}_{\text {REF }}=+10 \mathrm{VDC}$, unless otherwise noted)

Integral Linearity Error vs. Reference Voltage

Linearity vs. Supply Voltage

Additional Linearity Error vs. Output-Amplifier Offset-Voltage $\left(V_{R E F}=+10 \mathrm{~V}\right)$

Gain Change vs. Supply Voltage

Power Supply Current vs. Voltage

PIN ASSIGNMENTS...

Pin 1 - IO_{1} - Current Output 1.
Pin $2-\mathrm{IO}_{2}-$ Current Output 2.
Pin 3 - GND - Ground.
Pin $4-\mathrm{DB}_{13}$ - MSB, Data Bit 1 .
Pin $5-\mathrm{DB}_{12}$ - Data Bit 2.
Pin 6 - DB_{11} - Data Bit 3.
Pin $7-\mathrm{DB}_{10}$ - Data Bit 4.
Pin $8-\mathrm{DB}_{9}$ - Data Bit 5.
Pin $9-\mathrm{DB}_{8}$ - Data Bit 6.
Pin $10-\mathrm{DB}_{7}$ - Data Bit 7 .
Pin 11 - DB_{6} - Data Bit 8.
Pin $12-\mathrm{DB}_{5}-$ Data Bit 9 .
Pin $13-\mathrm{DB}_{4}$ - Data Bit 10.
Pin $14-\mathrm{DB}_{3}$ - Data Bit 11.
Pin $15-\mathrm{DB}_{2}$ - Data Bit 12.
Pin 16 - DB_{1} - Data Bit 13.
Pin 17 - DB 0 - LSB, Data Bit 14.
Pin $18-\mathrm{V}_{\mathrm{DD}}$ - Positive Supply Voltage.
Pin 19 - $\mathrm{V}_{\text {REF }}$ - Reference Voltage Input.
Pin $20-\mathrm{R}_{\mathrm{FB}}$ - Feedback Resistor.

FEATURES...

The SP7514 and HS3140 are precision 14-bit multiplying DACs. The DACs are implemented as a onechip CMOS circuit with a resistor ladder network.

Three output lines are provided on the DACs to allow unipolar and bipolar output connection with a minimum of external components. The feedback resistor is internal. The resistor ladder network termination is externally available, thus eliminating an external resistor for the 1 LSB offset in bipolar mode.

The SP7514 is available for use in commercial and industrial temperature ranges, packaged in a 20 -pin SOIC. The HS3140 is available in commercial and military temperature ranges, packaged in a 20-pin side-brazed DIP. For product processed and screened to the requirements of MIL-M38510 and MIL-STD-883C, please consult the factory (HS3140B only).

PRINCIPLES OF OPERATION

The SP7514/HS3140 achievehigh accuracy by using a decoded or segmented DAC scheme to implement this function. The following is a brief description of this approach.

The most common technique for building a D / A converter of n bits is touse nswitches to turn n current or voltage sources on or off. The n switches and n sources are designed sothateach switch or bitcontributestwice as much totheD/A converter'soutputasthe preceding bit. This technique is commonly known as binary weighting and allows an n-bit converter to generate 2^{n} output levels by turning on the proper combination of bits.

In such binary-weighted converter, the switch with the smallest contribution (the LSB) accounts for only 2^{-n} of the converter's full-scale value. Similarly, the switch with the largest contribution (the MSB) accounts for 2^{-1} or half of the converter's full-scale output. Thus it is easy to see that a given percent change in the MSB will have a greater effect on the converter's output than would a similar percent change in the LSB. For example, a 1% change in the LSB of a 10 bit converter would only affect the output by 0.001% of full-scale. A 1% change in the MSB of the same converter would affect the output by 0.5% of FSR.

In order to overcome the problem which results from the large weighting of the MSB, the two MSB's can be decoded to three equally weighted sources. Table l shows that all combinations of the two MSB's of a converter result in four output levels. So by replacing the two MSB's with three bits equally weighted at 1 / 4 full-scale and decoding the two MSB digital inputs into three lines which drive the equally weighted bits, the same functional performance can be obtained. Thus by replacing the two MSB switches of a conventional converter with three switches properly decoded, the contribution of any switch is reduced from $1 / 2$ to $1 / 4$. This reduction in sensitivity alsoreduces the

Figure 1. SP7514/HS3140 Equivalent Output Circuit

$\mathbf{2 \cdot 1}(\mathbf{M S B})$	$\mathbf{2 \cdot 2}$	Output
0	0	0
0	1	$1 / 4$ Full-Scale
1	0	$1 / 2$ Full-Scale
1	1	$3 / 4$ Full-Scale

Table 1. Contribution of the two MSB's
accuracy required of any switch for a given overall converter accuracy.

With the decoded converter described above, a 1% change in any of the converter's switches will affect the output by no more than 0.25% of full-scale as compared to 0.5% for a conventional converter. In other words the conventional D/A converter can be made less sensitive to the quality of its individual bits by decoding.

In the SP7514/HS3140 the first four MSB's are decodedinto 16levelswhichdrive 15 equally weighted current sources. The sensitivity of each switch on the output is reduced by a factor of 8 . Each of the 15 sources contributes 6.25% output change rather than an MSB change of 50% for the common approach.

Following the decoded section of the DAC a standard binary weighted $\mathrm{R}-2 \mathrm{R}$ approach is used. This divides each of the 16 levels (or 6.25% of F.S.) into 4096 discrete levels (the 12 LSB's).

Output Capacitance

The SP7514/HS3140 have very low output capacitance $\left(\mathrm{C}_{\mathrm{O}}\right)$. This is specified both with all switches ON and all switches OFF. Output capacitance varies from 50 pF to 100 pF over all input codes. This low capacitance is due in part to the decoding technique used. Smaller switches are used with resulting less capacitance. Three important system characteristics are affected by C_{O} and $\Delta \mathrm{C}_{\mathrm{O}}$; namely digital feedthrough,

TRANSFER FUNCTION ($\mathbf{N = 1 4)}$		
BINARY INPUT	UNIPOLAR OUTPUT	BIPOLAR OUTPUT
111... 111	$-\mathrm{V}_{\text {REF }}(1-2-\mathrm{N})$	$-\mathrm{V}_{\text {REF }}(1-2-\mathrm{N}-1)$
100... 001	$-\mathrm{V}_{\text {REF }}\left(1 / 2+2^{-N}\right)$	$-\mathrm{V}_{\text {REF }}(2-\mathrm{N}-1)$
100... 000	$-\mathrm{V}_{\text {REF }} / 2$	0
011... 111	$-\mathrm{V}_{\text {REF }}\left(1 / 2-2^{-\mathrm{N}}\right)$	$\mathrm{V}_{\text {REF }}(2-(\mathrm{N}-1)$)
000... 001	$-\mathrm{V}_{\text {REF }}\left(2^{(N-1)}\right)$	$V_{\text {REF }}(1-2-(N-1)$
000...000	0	$\mathrm{V}_{\text {REF }}$

Table 2. Transfer Function

Figure 2. Unipolar Operation
settlingtime, andbandwidth.TheDACoutputequivalent circuit can be represented as shown in Figure 1.

Digital feedthrough is the change in analog outputdue to the toggling conditions on the converter input data lines when the analog input $\mathrm{V}_{\text {REF }}$ is at 0 V . The SP7514/HS3140 very low C_{O} and therefore will yield low digital feedthrough. Inputs to the DAC can be buffered.Thisinputlatch withmicroprocessorcontrol is shown in Figure 4.

Settlingtime isdirectly affected by C_{O}.In Figure $1, \mathrm{C}_{\mathrm{O}}$ combines with R_{f} to add a pole to the open loop response, reducing bandwidth and causing excessive phase shift - which could result in ringing and/or oscillation. A feedback capacitor, C_{f} mustbe added to restore stability. Even with C_{f}, there is still a zero-pole mismatch due to $\mathrm{R}_{\mathrm{i}} \mathrm{C}_{\mathrm{O}}$ which is code dependent. This code dependent mismatch is minimized when $\mathrm{C}_{\mathrm{O}} \mathrm{R}_{\mathrm{i}}=$ $\mathrm{R}_{\mathrm{f}} \mathrm{C}_{\mathrm{f}}$ However C_{f} must now be made larger to compensate for worst case $\Delta \mathrm{R}_{\mathrm{i}} \mathrm{C}_{\mathrm{O}}$ - resulting in reducedbandwidthandincreasedsettling time. With the SP7514/HS3140, small values for C_{f} must be used.

Figure 3. Bipolar Operation

Figure 4. Microprocessor Interface to SP7514/HS3140

Resistor R_{p} can be added, this will parallel R_{d} decreasing the effective resistance. If C_{f} is reduced the bandwidth will be increased and settling time decreased. However a system penalty for lowering C_{f} is to increase noise gain. The trade-off is noise vs. settling time. If R_{p} is added then a large value ($1 \mu \mathrm{~F}$ or greater) non-polarized capacitor C_{p} should be added in series with R_{p} to eliminate any $D C$ drifts. If settling time is not important, eliminate R_{p} and C_{p}, and adjust C_{f} to prevent overshoot.

Output Offset

In most applications, the output of the DAC is fed into an amplifier to convert the DAC's current output to voltage. A little known and not commonly discussed parameter is the linearity error versus offset voltage of the output amplifier. AllCMOS DAC's must operate into a virtual ground, i.e., the summing junction of an op amp. Any amplifier'soffset from the amplifier will appear as an error at the output (which can be related to LSB's of error).

Most allCMOSDAC's currently available are implemented using an R-2R ladder network. The formula for nonlinearity is typically $0.67 \mathrm{mV} / \mathrm{mV}_{\text {OS }}$ (not derived here). However the SP7516 has a coefficient of only $0.065 \mathrm{mV} / \mathrm{mVOS}$. This is due to the decoding technique described earlier. CMOS DAC applications notes (including this one) always show a potentiometer used to null out the amplifier's offset. If an amplifier is chosen having 'pretrimmed' offset it may be possible to eliminate this component. Consider the following calculations:

1. Using LF441A amplifier (low power -741 pinout)
2. Specified offset: 0.5 mV max
3. Temperature coefficient of input offset: $10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ max $\mathrm{V}_{\mathrm{OS}} \max \left(0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)=0.5 \mathrm{mV}+(70 \mu \mathrm{~V}) 10$ $=1.2 \mathrm{mV}$
Add' nonlinearity (max.) $=1.2 \mathrm{mV} \times 0.065 \mathrm{mV} / \mathrm{mV}$ $=\quad 78 \mu \mathrm{~V}$ (1/2 LSB @ 16 Bits)
Where: $78 \mu \mathrm{~V}=1 / 2 \mathrm{LSB}$ @ 16 Bits (10 V range)
Via the above configuration, the SP7514/HS3140 can be used to divide an analog signal by digital code (i.e. for digitally controlled gain). The transfer function is given in Table 2, where the value of each bit is 0 or 1.Division by all " 0 " s is undefined and causes the op amp to saturate.

Applications Information Unipolar Operation

Figure 2 shows the interconnections for unipolar operation. Connect $\mathrm{I}_{\mathrm{O} 1}$ and FB_{1} as shown in diagram. Tie $\mathrm{I}_{\mathrm{O} 2}(\mathrm{Pin} 7), \mathrm{FB}_{3}(\mathrm{Pin} 3)$, and $\mathrm{FB}_{4}(\mathrm{Pin} 1)$ to Ground (Pin 8). As shown, a series resistor is recommended in the V_{DD} supply line to limit current during 'turn-on'. To maintain specified linearity, external amplifiers must be zeroed. Apply an ALL "ZEROES" digital input and adjust $\mathrm{R}_{\text {OS }}$ for $\mathrm{V}_{\text {OUT }}=0 \pm 1 \mathrm{mV}$. The SP7514 and HS3140 have been used successfully with OP-07, OP-27 and LF441A. For high speed applications the SP2525 is recommended.

Bipolar Operation

Figure 3 shows the interconnections for bipolar operation. Connect $\mathrm{I}_{\mathrm{Ol}}, \mathrm{I}_{\mathrm{O} 2}, \mathrm{FB}_{1}, \mathrm{FB}_{3}, \mathrm{FB}_{4}$ as shown in diagram. Tie LDTR to $\mathrm{I}_{\mathrm{O} 2}$. As shown, a series resistor isrecommendedinthe V_{DD} supply linetolimitcurrent during 'turn-on. Tomaintain specified linearity, external amplifiers must be zeroed. This is best done with $\mathrm{V}_{\text {REF }}$ set to zero and, the DAC register loaded with $10 \ldots 0(\mathrm{MSB}=1)$. Set $\mathrm{R}_{0 S 1}$ for $\mathrm{V}_{01}=0$. Set $\mathrm{R}_{0 S 2}$ for $\mathrm{V}_{\text {OUT }}=0$. Set $\mathrm{V}_{\text {REF }}$ to +10 V and adjust R_{B} for $\mathrm{V}_{\text {OUT }}$ to be 0 V .

Grounding

Connect all GND pins to system analog ground and tie this to digital ground. All unused input pins must be grounded.

Sipex

SIGNALPROCESSING EXCEயENCE

Sipex Corporation

Headquarters and

Sales Office
22 Linnell Circle
Billerica, MA 01821
TEL: (978) 667-8700
FAX: (978) 670-9001
e-mail: sales@sipex.com

Sales Office

233 South Hillview Drive
Milpitas, CA 95035
TEL: (408) 934-7500
FAX: (408) 935-7600

