Quad, 12-Bit, Voltage Output D/A Converter

- Low Cost

- Four 12-Bit DAC's on a Single Chip
- Low Power - 80 mW (20mW/DAC)
- Double-Buffered Inputs
- $\pm 5 \mathrm{~V}$ Supply Operation
- Voltage Outputs, $\pm 4.5 \mathrm{~V}$ Range
- Midscale Preset, Zero Volts Out
- Guaranteed ± 0.5 LSB Max INL

■ Guaranteed +0.75 LSB Max DNL

- 2MHz 4-Quadrant Multiplying Bandwidth
- 28-pin SOIC and Plastic DIP Packages

- Either 12 or 8 bit $\mu \mathrm{P}$ bus

DESCRIPTION

The SP9504 is a low power replacement for the popular SP9345, Quad 12-Bit Digital-to-Analog Converter. It features $\pm 4.5 \mathrm{~V}$ output swings when using ± 5 volt supplies. The converter is doublebuffered for easy microprocessor interface. Each 12-bit DAC is independently addressable and all DACs may be simultaneously updated using a single transfer command. The output settlingtime is specified at $4 \mu \mathrm{~s}$. The SP9504 is available in 28 -pin SOIC and plastic DIP packages, specified over commercial temperature range.

ABSOLUTE MAXIMUM RATINGS

These are stress ratings only and functional operation of the device at these or any other above those indicated in the operation sections of the specifications below is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

$\mathrm{V}_{\text {DD }}$ - GND ... -0.3V, +6.0V	
$V_{\text {Ss }}-\mathrm{GND}$	+0.3V, -6.0V
$\mathrm{V}_{\text {DD }}-\mathrm{V}_{\text {SS }}$	
$\mathrm{V}_{\text {REF }}$... $\mathrm{V}_{\text {SS }}, \mathrm{V}_{\text {DD }}$	$\mathrm{V}_{S S}, \mathrm{~V}_{\mathrm{DD}}$
$\mathrm{D}_{\text {IN }}$	$\ldots . . V_{S S}, \mathrm{~V}_{\mathrm{DD}}$
Power Dissipation	
Plastic DIP ... 375mW	
(derate $7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	
Small Outline	375 mW
(derate $7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)	

CAUTION:

ESD (ElectroStatic Discharge) sensitive device. Permanent damage may occur on unconnected devices subject to high energy electrostatic fields. Unused devices must be stored in conductive foam or shunts Personnel should be properly grounded prior to handling this device. The protective foam should be discharged to the destination socket before devices are removed.

SPECIFICATIONS

(Typical at $25^{\circ} \mathrm{C} ; \mathrm{T}_{\mathrm{MIN}} \leq \mathrm{T}_{\mathrm{A}} \leq \mathrm{T}_{\mathrm{MAX}} ; \mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=+3 \mathrm{~V} ; \mathrm{CMOS}$ logic level digital inputs; specifications apply to all grades unless otherwise noted.)

PARAMETER	MIN.	TYP.	MAX.	UNITS	CONDITIONS
DIGITAL INPUTS Logic Levels $\mathrm{V}_{\text {IH }}$ V_{1} 4 Quad, Bipolar Coding	2.4	set Bin	0.8	Volts Volts	
REFERENCE INPUT Voltage Range Input Resistance	1.5	$\frac{ \pm 3}{2.2}$	± 4.5	Volts $\mathrm{k} \Omega$	Note 5 $D_{\text {IN }}=1,877$; code dependent
ANALOG OUTPUT Gain -K -J $-\mathrm{K},-\mathrm{J}$ Initial Offset Bipolar Voltage Range Bipolar Output Current	$\begin{array}{r} \pm 5.0 \\ \pm 0.5 \\ \hline \end{array}$	$\begin{gathered} \pm 0.5 \\ \pm 1.0 \\ \pm 1.0 \\ \pm 0.25 \\ \pm 3.0 \end{gathered}$	$\begin{aligned} & \pm 2.0 \\ & \pm 4.0 \\ & \pm 5.0 \\ & \pm 3.0 \\ & \pm 4.5 \end{aligned}$	LSB LSB LSB LSB Volts mA mA	$\begin{aligned} & \mathrm{V}_{\text {REF }}= \pm 3 \mathrm{~V} ; \text { Note } 3 \\ & \mathrm{~V}_{\text {REF }}= \pm 3 \mathrm{~V} ; \text { Note } 3 \\ & \mathrm{~V}_{\text {REF }}= \pm 4.5 \mathrm{~V} ; \text { Note } 3 \\ & \mathrm{D}_{\text {IN }}=2,048 \\ & \mathrm{~V}_{\text {REF }}= \pm 3 \mathrm{~V} \\ & \mathrm{~V}_{\text {REF }}= \pm 4.5 \mathrm{~V} \end{aligned}$
STATIC PERFORMANCE Resolution Integral Linearity -K -J $-K,-J$ Differential Linearity -K $-J$ Monotonicity	12	$\begin{gathered} \pm 0.25 \\ \pm 0.5 \\ \pm 0.5 \\ \pm 0.25 \\ \pm 0.25 \\ \text { tarante } \end{gathered}$	$\begin{gathered} \pm 0.5 \\ \pm 1.0 \\ \pm 3.0 \\ \pm 0.75 \\ \pm 1.0 \end{gathered}$	$\begin{aligned} & \text { Bits } \\ & \text { LSB } \end{aligned}$	$\mathrm{V}_{\text {REF }}= \pm 3 \mathrm{~V}$; Note 3 $V_{\text {REF }}= \pm 3 \mathrm{~V}$; Note 3 $V_{\text {REF }}= \pm 4.5 \mathrm{~V}$; Note 3
DYNAMIC PERFORMANCE Multiplying Bandwidth Settling Time Small Signal Full Scale Slew Rate		$\begin{gathered} 2 \\ 0.5 \\ 4 \\ 4 \end{gathered}$		$\begin{array}{r} \mathrm{MHz} \\ \mu \mathrm{~s} \\ \mu \mathrm{~s} \\ \mathrm{~V} / \mu \mathrm{s} \end{array}$	$\begin{aligned} & \text { to } 0.012 \% \\ & \text { to } 0.012 \% \end{aligned}$

SPECIFICATIONS (CONTINUED)

(Typical at $25^{\circ} \mathrm{C} ; \mathrm{T}_{\text {MIN }} \leq \mathrm{T}_{A} \leq T_{\text {MAX }} ; \mathrm{V}_{D D}=+5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=+3 \mathrm{~V} ; \mathrm{CMOS}$ logic level digital inputs; specifications apply to all grades unless otherwise noted.)

PARAMETER	MIN.	TYP.	MAX.	UNITS	CONDITIONS
SWITCHING CHARACTERISTICS					
t_{DS} Data Set Up Time	140	100		ns	to rising edge of WR1
t_{DN} Data Hold Time	0			ns	Figure 4
$\mathrm{t}_{\text {wR }}$ Write Pulse Width	140	100		ns	
$\mathrm{t}_{\text {xfer }}$ Transfer Pulse Width	140	100		ns	
t_{wc} Total Write Command	280	200		ns	
STABILITY					
Gain		15		ppm/ $/{ }^{\circ} \mathrm{C}$	$\mathrm{t}_{\text {muN }}$ to $\mathrm{t}_{\text {max }}$
Bipolar Zero		15		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$	$\mathrm{t}_{\text {MiN }}$ to $\mathrm{t}_{\text {MAX }}$
POWER REQUIREMENTS					Note 5
$\mathrm{V}_{\text {D }}$					$+5 \mathrm{~V}, \pm 3 \%$; Note 4, 5
-J, -K		8	11	mA	
V_{SS}					$-5 \mathrm{~V}, \pm 3 \%$; Note 4, 5
$-J,-K$ Power Dissipation		$\begin{gathered} 8 \\ 80 \end{gathered}$	11	mA mW	
ENVIRONMENTAL AND MECHANICAL					
Operating Temperature					
-J, -K	0		+70	${ }^{\circ} \mathrm{C}$	
Storage	-60		+150	${ }^{\circ} \mathrm{C}$	
Package					
-_P		Plasti			

Notes:

1. Integral Linearity, for the SP9504, is measured as the arithmetic mean value of the magnitudes of the greatest positive deviation and the greatest negative deviation from the theoretical value for any given input condition.
2. Differential Linearity is the deviation of an output step from the theoretical value of 1 LSB for any two adjacent digital input codes.
3. $1 \mathrm{LSB}=2^{*} \mathrm{~V}_{\mathrm{REF}} / 4,096$.
4. $\quad V_{\text {REF }}=0 \mathrm{~V}$.
5. The following power up sequence is recommended to avoid latch up: Vss (-5 V), Vdd (+5V), REF IN.

PIN ASSIGNMENTS

Pin 1 - $\mathrm{V}_{\text {out } 4}$ - Voltage Output from DAC4.
Pin $2-\mathrm{V}_{\mathrm{SS}}--5 \mathrm{~V}$ Power Supply Input.
Pin $3-\mathrm{V}_{\mathrm{DD}}-+5 \mathrm{~V}$ Power Supply Input.
Pin $4-\overline{\mathrm{CLR}}-\overline{\text { Clear. Gated with } \overline{\mathrm{WR} 2} \text { (pin }}$ 11). Active low. Clears all DAC outputs to 0 V .

Pin 5 -REF IN — Reference Input for DACs.
Pin 6 - GND - Ground.
Pin 7 - B1/B2 — Byte $1 / \overline{\text { Byte } 2}$ - Selects Data Input Format. A logic " 1 " on pin 7 selects the 12 -bit mode, and all 12 data bits are presented to the DAC(s) unchanged; a logic " 0 " selects the 8 -bit mode, and the four LSBs are connected to the four MSBs, allowing an 8-bit MSB-justified interface.

Pins 8 and $9-A_{0} \& A_{1}$ - Address for DAC Selection. $\mathrm{A}_{1} / \mathrm{A}_{0}=0 / 0=\mathrm{DAC} 1 ; 0 / 1=\mathrm{DAC} 2 ; 1 /$ $0=\mathrm{DAC} 3 ; 1 / 1=\mathrm{DAC} 4$.
Pin 10 - $\overline{\text { XFER }}$ - $\overline{\text { Transfer }}$. Gated with $\overline{\text { WR2 }}$ (pin 11); loads all DAC registers simultaneously. Active low.

Pin $11-\overline{\mathrm{WR} 2}-\overline{\text { Write Input } 2}$ - In conjunction with $\overline{\mathrm{XFER}}$ (pin 10), controls the transfer of data from the input registers to the DAC registers. In conjunction with $\overline{\mathrm{CLR}}$ (pin 4), the DAC registers are forced to 100000000000 and the DAC outputs will settle to 0 V . Active low.
Pin 12 - $\overline{\mathrm{WR} 1}-\overline{\text { Write Input } 1}$ - In conjunction with $\overline{\mathrm{CS}}$ (pin 13), enables input register selection, and controls the transfer of data from the input bus to the input registers. Active low.
Pin 13 — $\overline{\mathrm{CS}}$ — $\overline{\text { ChipSelect -Enables writing data }}$ to input registers and/or transferring data from input bus to DAC registers. Active low.

Pin 14 - $\mathrm{V}_{\text {outi }}$ - Voltage Output from DAC1.
Pin $15-\mathrm{V}_{\text {out } 2}$ - Voltage Output from DAC2.
Pin 16 — DB_{11} —Data Bit 11; MostSignificant Bit.
Pin $17-\mathrm{DB}_{10}$ - Data Bit 10.
Pin $18-\mathrm{DB}_{9}-$ Data Bit 9 .
Pin $19-\mathrm{DB}_{8}-$ Data Bit 8 .
Pin $20-\mathrm{DB}_{7}$ - Data Bit 7.
Pin $21-\mathrm{DB}_{6}$ - Data Bit 6.
Pin $22-\mathrm{DB}_{5}-$ Data Bit 5.
Pin $23-\mathrm{DB}_{4}-$ Data Bit 4.
Pin $24-\mathrm{DB}_{3}$ - Data Bit 3 .
Pin $25-\mathrm{DB}_{2}-$ Data Bit 2.
Pin $26-\mathrm{DB}_{1}$ - Data Bit 1.
Pin $27-\mathrm{DB}_{0}$ — Data Bit 0; LSB
Pin $28-\mathrm{V}_{\text {out3 }}$ - Voltage Output from DAC3.

FEATURES

The SP9504 is a low-power replacement for the popular SP9345, Quad 12-Bit Digital-to-Analog Converter. This Quad, Voltage Output, 12-Bit Digi-tal-to-AnalogConverterfeatures $\pm 4.5 \mathrm{~V}$ outputswings when using ± 5 volt supplies. The input coding format used is standard offset binary, Table 1.

The converterutilizes double-bufferingoneach ofthe 12 parallel digital inputs, for easy microprocessor interface. Each 12 -bitDAC is independently addressable and all DACs may be simultaneously updated using a single $\overline{\text { XFER }}$ command. The output settlingtime is specified at 4μ s to full 12-bit accuracy when driving a $5 \mathrm{Kohm}, 50 \mathrm{pF}$ load combination. The SP9504, Quad 12-BitDigital-to-Analog Converter is ideally suited for applications such as ATE, process controllers, robotics, andinstrumentation. TheSP9504 is available in 28 -pin plastic DIP or SOIC packages, specified over the commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$ temperature range.

THEORY OF OPERATION

The SP9504 consists of five main functional blocks -input datamultiplexer, data registers, control logic, four 12-bit D/A converters, and four bipolar output voltage amplifiers. The input data multiplexer is designed to interface to either 12- or 8-bit microprocessor databusses. The input data format is controlled by the B1/B2 signal - a logic " 1 " selects the 12-bit mode, while a logic " 0 " selects the 8 -bit mode. In the 12-bit mode the datais transferredtothe inputregisters without changes in its format. In the 8 -bit mode, the four least significant bits (LSBs) are connected to the

INPUT			OUTPUT	
MSB		LSB		
1111	1111	1111	VREF - 1 LSB	
1111	1111	1110	VREF - 2 LSB	
1000	0000	0001	$0+1$ LSB	
1000	0000	0000	0	
0000	0000	0001	-VREF + 1 LSB	
0000	0000	0000	-VREF	
1 LSB $=\frac{2^{\text {REF }}}{2^{12}}$				

Table 1. Offset Binary Coding
four most significant bits (MSBs), allowing an 8-bit MSB-justified interface. All data inputs are enabled using the $\overline{\mathrm{CS}}$ signal in both modes. The digital inputs are designed to be both TTL and 5 V CMOS compatible.

In ordertoreduce the DACfull scaleoutputsensitivity to the large weighting of the MSB's found in conventional R-2R resistor ladders, the 3MSB's are decoded into 8 equally weighted levels. This reduces the contribution of each bit by a factor of 4 , thus, reducing the output sensitivity to mismatches in resistors and switches by the same amount. Linearity errors and stability are both improved for the same reasons.

Each D/A converter is separated from the data bus by two registers, each consisting oflevel-triggered latches, Figure 1. The first register (input register) is 12-bits wide. The input register is selected by the address input A_{0} and A_{1}, and is enabled by the $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR} 1}$ signals. In the 8 -bit mode, the enable signal to the 8 MSB's is disabled by a logic low on $\mathrm{B} 1 / \overline{\mathrm{B} 2}$ to allow the 4LSB's to be updated. The second register (DAC register), accepts the decoded 3 MSB's plus the 9 LSB's. The four DAC registers are updated simultaneously for all DAC's using the XFER and $\overline{\mathrm{WR} 2}$ signals. Using the $\overline{\mathrm{CLR}}$ and $\overline{\mathrm{WR} 2}$ signals or the power-on-reset, (enabled when the power is switched on) the DAC registers are set to 100000000000 and the DAC outputs will settle to 0 V .

Using the control logic inputs, the user has full control of address decoding, chip enable, data transfer and clearing of the DAC's. The control logic inputs are level triggered, and like the data inputs, are TTL and CMOS compatible. The truth table (Table 2) shows the appropriate functions associated with the states of the control logic inputs.

The DACs themselves are implemented with a precision thin-film resistor network and CMOS transmission gate switches. Each D/A converter is used to convert the 12-bit input from its DAC register to a precision voltage.

The bipolar voltage output of the SP9504 is created on-chip from the DAC Voltage Output ($\mathrm{V}_{\mathrm{DAC}}$) by using an operational amplifier and two feedback resistors connected as shown in Figure 2. This configuration produces $\mathrm{a} \pm 4.5 \mathrm{~V}$ bipolar output range with standard offset binary coding.

Figure 1. Detailed Block Diagram (only one DAC shown)

USING THE SP9504 WITH DOUBLE-BUFFERED INPUTS
 Loading Data

To load a 12-bit word to the input register of each DAC, using a 12 -bit data bus, the sequence is as follows:

1) Set $\overline{\mathrm{XFER}}=1, \mathrm{~B} 1 / \overline{\mathrm{B}} 2=1, \overline{\mathrm{CLR}}=1, \overline{\mathrm{WR} 1}=1$, $\overline{\mathrm{WR} 2}=1, \overline{\mathrm{CS}}=1$.
2) Set A_{1} and A_{0} (the DAC address) to the desired DAC $-0,0=\mathrm{DAC}_{1} ; 0,1=\mathrm{DAC}_{2}$ $1,0=\mathrm{DAC}_{3} ; 1,1=\mathrm{DAC}_{4}$.
3) Set D11 (MSB) through D0 (LSB) to the desired digital input code.
4) Load the word to the selected DAC by cycling $\overline{\mathrm{WR} 1}$ and $\overline{\mathrm{CS}}$ through the following sequence:

$$
" 1 "-" 0 "-\quad " 1 "
$$

5) Repeat sequence for each input register.

A_{1}	A_{0}	$\overline{\mathbf{C S}}$	$\overline{\text { WR1 }}$	B1/B2	$\overline{\text { WR2 }}$	$\overline{\text { XFER }}$	$\overline{\text { CLR }}$	FUNCTION
0	0	บ	๖	1	1	X	X	Address DAC 1 and load input register
0	0	บ	ᄃ	0	1	X	X	Address DAC 1 and load 4 LSBs
0	1	บ	Ч	1	1	X	X	Address DAC 2 and load input register
0	1	บ	บ	0	1	X	X	Address DAC 2 and load 4 LSBs
1	0	■	■	1	1	X	X	Address DAC 3 and load input register
1	0	ナ	■	0	1	X	X	Address DAC 3 and load 4 LSBs
1	1	■	\checkmark	1	1	X	X	Address DAC 4 and load input register
1	1	■	■	0	1	X	X	Address DAC 4 and load 4 LSBs
X	X	**	**	X	־	\checkmark	1	Transfer data from input registers to DAC registers
X	X	X	X	X	■	1	-	Sets all DAC output voltages to OV
X	X	1	1	X	0	0	ᄃ	Temporarily force all DAC output voltages to OV , while $\overline{\mathrm{CLR}}$ is low
X	X	1	X	X	X	X	X	Invalid state with any other control line active
X	X	X	1	X	X	X	X	Invalid state with any other control line active

[^0]Table 2. Control Logic Truth Table

$$
\begin{aligned}
& V_{\text {Out }}=\left(\frac{D}{2048}-1\right) \times \text { REF IN } \\
& V_{\text {DAC }}=\frac{D}{4,096} \times \text { REF IN }
\end{aligned}
$$

Figure 2. Transfer Function

TRANSFERRING DATA

To transfer the four 12-bit words in the four input registers to the four DAC registers:

1) Set $\overline{\mathrm{CLR}}=1, \overline{\mathrm{CS}}=1, \overline{\mathrm{WR}} 1=1$.
2) Cycle $\overline{W R 2}$ and $\overline{X F E R}$ through the " 1 " - " 0 " - " 1 " sequence.

To set the outputs of the four DAC's to 0 V , cycle $\overline{\text { WR2 }}$ and CLR through the " 1 "- " 0 "-" 1 " sequence, while keeping $\overline{\mathrm{XFER}}=1$.

ONE LATCH, OR NO LATCHES

The latches that form the registers can be used in a "semi-" transparent mode, and a "fully-" transparent mode. In order to use the SP9504 in either mode the user must be interfaced to a 12-bit bus only $(\mathrm{B} 1=1)$.

The semi-transparent mode is set up such that the second set of latches is transparent and the first set is used to latch the incoming data. Data is latched into the first set rather than the second set, in order to minimize glitch energy induced from the data formatting. In this mode, XFER, $\overline{\mathrm{WR} 2}$ and $\overline{\mathrm{CS}}$ are tied low, and $\overline{\mathrm{WR} 1}$ is used to strobe the data to the addressed DAC. Each DAC is addressed using the address lines A_{0} and A_{1}. After the appropriate DAC has been selected and the data is settled at the digital inputs,
bringing $\overline{\mathrm{WR} 1}$ low will transfer the data to the addressed DAC. The user should be sure to bring WR1 high again so that the next selected DAC will not be overwritten by the last digital code. This mode of operation may be useful in applications where preloading of the input registers is not necessary Figure $3 a$.

A fully transparent mode is realized by tying $\overline{\mathrm{WR} 1}, \overline{\mathrm{CS}}, \overline{\mathrm{WR} 2}$, and $\overline{\mathrm{XFER}}$ all low. In this mode, anything that is written on the 12-bit data bus will be passed directly to the selected DAC. Since both latches are not being used, the previous digital word will be overwritten by the new data as soon as the address changes. This may be useful should the user want to calibrate a circuit, by taking full scale or zero scale readings for all four DAC's, Figure $3 b$.

ZEROING DAC OUTPUTS

While keeping $\overline{\text { XFER }}$ pin high, the DAC outputs can be set to zero volts two different ways. The first involves the $\overline{\mathrm{CLR}}$ and $\overline{\mathrm{WR} 2}$ pins. In normal operation, the CLR pin is tied high, thus, disabling the clear function. By cycling $\overline{\mathrm{WR} 2}$ and $\overline{\text { CLR }}$ through " 1 " - " 0 " - " 1 " sequence, a digital code of 100000000000 is written to all four DAC registers, producing a half scale output or zero volts. The second utilizes the built in power-
on-reset. Using this feature, the SP9504 can be configured such that during power-up, the second register will be digitally "zeroed", producing a zero volt output at each of the four DAC outputs. This is achieved by powering the unit up with XFER in a high state. Thus, with no external circuitry, the SP9504 can be powered up with the analog outputs at a known, zero volt output level.

TEMPORARILY FORCING

 ALL DAC OUTPUTS TO OVSet $\overline{\mathrm{WR} 1}=1, \overline{\mathrm{CS}}=1, \overline{\mathrm{WR} 2}=0, \overline{\mathrm{XFER}}=0$. The DAC registers can be temporarily forced to 10000000 0000 by bringing the $\overline{\text { CLR }}$ pin low. This will force the DAC outputs to 0V, while the $\overline{\mathrm{CLR}}$ pin remains low. When the $\overline{C L R}$ pin is brought back high, the digital code at the DAC registers will again appear at the DAC's digital inputs, and the analog outputs will return to their previous values.

Figure 3. Latch Control Options - (a) Semi-Transparent Latch Mode; (b) Fully-Transparent Latch Mode

Figure 4. Timing

DIMENSIONS (Inches) Minimum/Maximum (mm)	28-PIN
A	$\begin{aligned} & 0.090 / 0.100 \\ & (2.29 / 2.54) \end{aligned}$
A1	$\begin{gathered} 0.004 / 0.010 \\ (0.102 / 0.254) \end{gathered}$
B	$\begin{gathered} 0.014 / 0.020 \\ (0.36 / 0.48) \end{gathered}$
D	$\begin{gathered} 0.706 / 0.718 \\ (17.93 / 18.24) \end{gathered}$
E	$\begin{gathered} 0.340 / 0.350 \\ (8.64 / 8.89) \end{gathered}$
e	$\begin{gathered} 0.050 \mathrm{BSC} \\ \text { (1.270 BSC) } \end{gathered}$
H	$\begin{gathered} 0.463 / 0.477 \\ (11.76 / 12.12) \end{gathered}$
L	$\begin{aligned} & 0.020 / 0.042 \\ & (0.51 / 1.07) \end{aligned}$
\varnothing	$\begin{gathered} 0^{\circ} / 8^{\circ} \\ \left(0^{\circ} / 8^{\circ}\right) \end{gathered}$

Please consult the factory for pricing and availability on a Tape-On-Reel option.

Sipex

SIGNALPROCESSING EXCEШENCE

Sipex Corporation

Headquarters and
Sales Office
22 Linnell Circle
Billerica, MA 01821
TEL: (978) 667-8700
FAX: (978) 670-9001
e-mail: sales@sipex.com

Sales Office

233 South Hillview Drive
Milpitas, CA 95035
TEL: (408) 934-7500
FAX: (408) 935-7600

Sipex Corporation reserves the right to make changes to any products described herein. Sipex does not assume any liability arising out of the application or use of any product or circuit described hereing; neither does it convey any license under its patent rights nor the rights of others.

[^0]: $\mathrm{X}=$ Don't care; ${ }^{* *}=$ Don't care; however, $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR} 1}=1$ will inhibit changes to the input registers.

