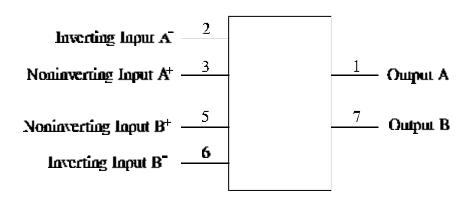
Dual Operational Amplifiers

The SL4558 is dual general purpose operational amplifiers.

The high common-mode input voltage range and the absence of latch-up make these amplifiers ideal for voltage follower application.


The devices are short circuit protected and the internal frequency compensation ensures stability without external components.

- Short-Circuit Protection
- Wide common-mode and differential ranges
- No frequency compensation required
- Low power consumption
- No latch-up
- 3 MHz unity gain bandwidth guaranteed
- Gain and phase math between amplifiers

PIN ASSIGNMENT

LOGIC DIAGRAM

Pin 4 = Supply Voltage V. Pin 8 = Supply Voltage V⁺

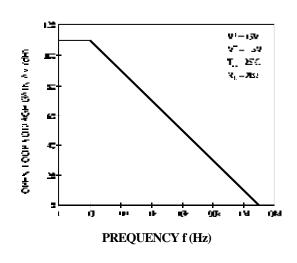
MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
$\mathbf{V}^{\scriptscriptstyle{+}}$	Supply Voltage	+18	V
V	Supply Voltage	-18	V
V_{IDR}	Differential Input Voltage	±30	V
V_{IN}	Input Voltage	±15	V
P_{D}	Power Dissipation in Still Air	570	mW
Tstg	Storage Temperature Range	-55 to +125	°C

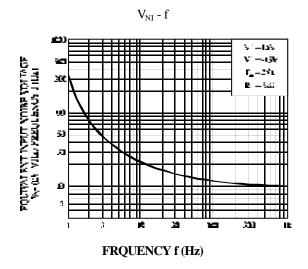
^{*} Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions.

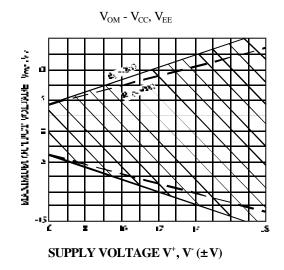
RECOMMENDED OPERATING CONDITIONS

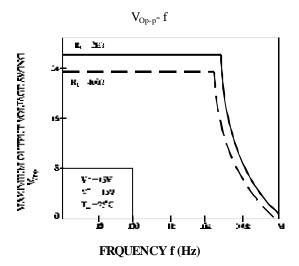
Symbol	Parameter	Min	Max	Unit
$\mathbf{V}^{\scriptscriptstyle{+}}$	Supply Voltage		+15	V
V	Supply Voltage		-15	V
T_{A}	Operating Temperature, All Pakage Types	0	+70	°C

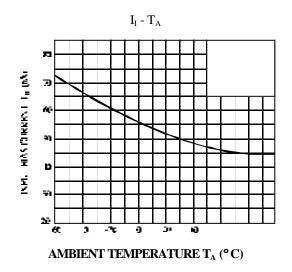

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{IN} and V_{OUT} should be constrained to the range $GND \leq (V_{IN} \text{ or } V_{OUT}) \leq V_{CC}$.

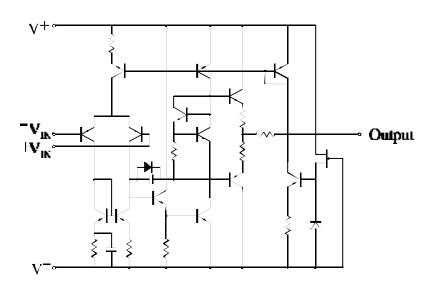
Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.


ELECTRICAL CHARACTERISTICS($T_A = 0$ to +70°C, $V^+ = +15$ V, V = -15 V)


Symbol	Parameter	Test Conditions	Guaranteed Limits			Unit
			Min	Тур	Max	
V_{IO}	Input Offset Voltage	$R_S \le 10 \text{ K}\Omega$			± 5.0	mV
I_{IO}	Input Offset Current				± 200	nA
I_{IB}	Input Bias Current				- 500	nA
\mathbf{r}_{i}	Input Resistance		0.3			$M\Omega$
A_{V}	Large-Signal Voltage Gain	$R_L \ge 2 K\Omega, V_C = \pm 10 V$	20			V/mV
V_{OM}	Output Voltage Swing	$R_L \ge 10 \text{ K}\Omega$	± 12			V
		$R_L \ge 2 K\Omega$	± 10			V
V_{ICR}	Input Common-Mode Voltage Range		± 12			V
CMRR	Common Mode Rejection Ratio	$R_{\rm S} \le 10 \ {\rm K}\Omega$	70			dB
PSRR	Supply Voltage Rejection Ratio	$R_S \le 10 \text{ K}\Omega$			150	μV/V
$I^{\scriptscriptstyle +}, I^{\scriptscriptstyle -}$	Supply Current				5.6	mA
SR	Slew Rate	$R_L = 2 K\Omega$				V/µs
P_{C}	Power Consumption	$R_L = \infty$			170	mW
V_N	Input Noise Voltage	$R_S = 1 K\Omega$ $f = 30 \text{ Hz} \sim 30 \text{ KHz}$		2.5		μVrms
I _{source}	Sourse Current		- 20			mA
I_{sink}	Sink Current		20			mA


TYPICAL PERFORMANCE CURVES





Schematic Diagram (Each Amplifier)

