SIEMENS

Silicon N Channel MOSFET Tetrode

 For input and mixer stages in FM and VHF TV tuners

5:1	

Туре	Marking	Ordering Code (tape and reel)	Pir 1	Pin Configuration		Package ¹⁾	
BF 995	MB	Q62702-F936	S	D	G ₂	G1	SOT-143

Maximum Ratings

Parameter	Symbol	Values	Unit
Drain-source voltage	Vds	20	V
Drain current	ID	30	mA
Gate 1/gate 2 peak source current	$\pm I$ G1/2SM	10	
Total power dissipation, $T_{\rm S}$ < 76 °C	Ptot	200	mW
Storage temperature range	Tstg	- 55 + 150	°C
Channel temperature	Tch	150	

Thermal Resistance

Junction - soldering point Rth Js	< 370 K	/W
-----------------------------------	---------	----

¹⁾ For detailed information see chapter Package Outlines.

Electrical Characteristics

at $T_A = 25$ °C, unless otherwise specified.

Parameter	Symbol	Values			Unit
		min.	typ.	max.	

DC Characteristics

Drain-source breakdown voltage $I_D = 10 \ \mu A, -V_{G1S} = -V_{G2S} = 4 \ V$	$V_{(BR)}$ ds	20	-	-	V
Gate 1 source breakdown voltage $\pm I_{G1S} = 10 \text{ mA}, V_{G2S} = V_{DS} = 0$	\pm V (BR) G1SS	8.5	-	14	
Gate 2 source breakdown voltage $\pm I_{G2S} = 10 \text{ mA}, V_{G1S} = V_{DS} = 0$	\pm V (BR) G2SS	8.5	-	14	
Gate 1 source leakage current $\pm V_{G1S} = 5 \text{ V}, V_{G2S} = V_{DS} = 0$	± IG1SS	-	-	50	nA
Gate 2 source leakage current $\pm V_{G2S} = 5 \text{ V}, V_{G1S} = V_{DS} = 0$	± I G2SS	-	-	50	
Drain current $V_{DS} = 15 \text{ V}, V_{G1S} = 0, V_{G2S} = 4 \text{ V}$	Idss	4	-	20	mA
Gate 1 source pinch-off voltage $V_{DS} = 15 \text{ V}, V_{G2S} = 4 \text{ V}, I_D = 20 \mu\text{A}$	$-V_{G1S(p)}$	-	-	2.5	V
Gate 2 source pinch-off voltage $V_{DS} = 15 \text{ V}, V_{G1S} = 0, I_D = 20 \mu \text{A}$	$-V_{G2S(p)}$	-	-	2.0	

Electrical Characteristics

Parameter	Symbol	Values			Unit
		min.	typ.	max.	1
AC Characteristics					
Forward transconductance $V_{DS} = 15 \text{ V}, I_D = 10 \text{ mA}, V_{G2S} = 4 \text{ V}, f = 1 \text{ kHz}$	g_{fs}	12	17	-	mS
Gate 1 input capacitance $V_{DS} = 15 \text{ V}, I_D = 10 \text{ mA}, V_{G2S} = 4 \text{ V}, f = 1 \text{ MHz}$	C_{g1ss}	-	3.6	-	pF
Gate 2 input capacitance $V_{DS} = 15 \text{ V}, I_D = 10 \text{ mA}, V_{G2S} = 4 \text{ V}, f = 1 \text{ MHz}$	Cg2ss	-	1.6	-	
Feedback capacitance $V_{DS} = 15 \text{ V}, I_D = 10 \text{ mA}, V_{G2S} = 4 \text{ V}, f = 1 \text{ MHz}$	Cdg1	-	25	-	fF
Output capacitance $V_{DS} = 15 \text{ V}, I_D = 10 \text{ mA}, V_{G2S} = 4 \text{ V}, f = 1 \text{ MHz}$	Cdss	-	1.6	-	pF
Power gain $V_{DS} = 15 \text{ V}, I_D = 10 \text{ mA}$ $f = 200 \text{ MHz}, G_G = 2 \text{ mS}, G_L = 0.5 \text{ mS}$ $2 \Delta f = 12 \text{ MHz}$ (see test circuit 1)	Gps	_	23	-	dB
Noise figure $V_{DS} = 15 \text{ V}, I_D = 10 \text{ mA}$ $f = 200 \text{ MHz}, G_G = 2 \text{ mS}, G_L = 0.5 \text{ mS}$ (see test circuit 1)	F	-	1.1	_	
Gain control range $V_{DS} = 15 \text{ V}, V_{G2S} = 4 \dots - 2 \text{ V}, f = 200 \text{ MHz}$ (see test circuit 1)	$\Delta G_{ m ps}$	-	50	-	
Mixer gain (additive) $V_{DS} = 15 \text{ V}, V_{G2S} = 6 \text{ V}, R_S = 220 \Omega$ $f = 200 \text{ MHz}, f_F = 36 \text{ MHz}$ $2 \Delta f_F = 5 \text{ MHz}, V_{OSC} = 0.5 \text{ V}$ (see test circuit 2)	Gpsc	-	16	_	
Mixer gain (multiplicative) $V_{DS} = 15 \text{ V}, V_{G1S} = 1.7 \text{ V}, V_{G2S} = 2.5 \text{ V}$ $R_S = 220 \Omega, f = 200 \text{ MHz}, f_F = 36 \text{ MHz}$ $2 \Delta f_F = 5 \text{ MHz}, V_{osc} = 2 \text{ V}$ (see test circuit 3)	Gpsc	-	18	-	

Total power dissipation $P_{\text{tot}} = f(T_A)$

Output characteristics $I_D = f(V_{DS})$ $V_{G2S} = 4 V$

Gate 1 forward transconductance $g_{fs1} = f(V_{G2S})$

Drain current $I_D = f(V_{G1S})$ $V_{DS} = 15 V$

Gate 2 input capacitance $C_{g2ss} = f(V_{G2s})$ $V_{G1s} = 0 \text{ V}, V_{Ds} = 15 \text{ V}$

Output capacitance $C_{dss} = f(V_{Ds})$ $V_{G1S} = 0 V, V_{G2S} = 4 V$

BF 995

Gate 1 input admittance y11s

Output admittance y_{22s}

Gate 1 forward transfer admittance y21s

Semiconductor Group

1) For footnote refer to the last page of this data sheet.

Interference voltage for 1% cross modulation $V_{int (1\%)} = f(f_{int})^{1}$ $V_{DS} = 15 \text{ V}, V_{G2S} = 4 \text{ V}, V_{G1S} = 0$

f=200 MHz (see test circuit 1)

Mixer gain (multiplicative) $G_{psc} = f(V_{G2S})$ $V_D = 15 \text{ V}, V_{G1S} = 1.7 \text{ V}, R_S = 200 \Omega$ $I_{DSS} = 10 \text{ mA}, f = 200 \text{ MHz}$ $f_{IF} = 36 \text{ MHz}$ (see test circuit 3)

Test circuit 1 for power gain, noise figure and cross modulation f= 200 MHz, G_G = 2 mS, G_L = 0.5 mS

Test circuit 2 for mixer gain (additive) $f= 200 \text{ MHz}, f_{\text{OSC}} = 236 \text{ MHz}, 2\Delta f_{\text{F}} = 5 \text{ MHz}$

Test circuit 3 for mixer gain (multiplicative) $f = 200 \text{ MHz}, f_{\text{osc}} = 236 \text{ MHz}, 2\Delta f_{\text{F}} = 5 \text{ MHz}$

¹⁾ $V_{\text{int (1\%)}}$ is the rms value of half the emf (terminal voltage at matching) of a 100 % sine modulated TV carrier at an internal generator resistance of 60 Ω , causing 1 % amplitude modulation on the active carrier.