SIEMENS

Silicon N Channel MOSFET Tetrode

- For input and mixer stages in FM and VHF TV tuners

Type	Marking	Ordering Code				Pin Configuration				Package ${ }^{\text {1 }}$
		(tape and reel)	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$				
BF 995	MB	Q62702-F936	S	D	G_{2}	G_{1}	SOT-143			

Maximum Ratings

Parameter	Symbol	Values	Unit
Drain-source voltage	V_{Ds}	20	V
Drain current	ID	30	mA
Gate 1/gate 2 peak source current	$\pm I_{\mathrm{G} 1 / 2 \mathrm{SM}}$	10	
Total power dissipation, $T \mathrm{~s}<76^{\circ} \mathrm{C}$	$P_{\text {tot }}$	200	mW
Storage temperature range	$T_{\text {stg }}$	$-55 \ldots+150$	${ }^{\circ} \mathrm{C}$
Channel temperature	T_{ch}	150	

Thermal Resistance

Junction - soldering point	$R_{\text {th Js }}$	<370	K/W

[^0]
Electrical Characteristics

at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.

Parameter	Symbol	Values			Unit
		min.	typ.	max.	

DC Characteristics

Drain-source breakdown voltage $I \mathrm{D}=10 \mu \mathrm{~A},-V_{\mathrm{G} 1 \mathrm{~S}}=-V_{\mathrm{G} 2 \mathrm{~s}}=4 \mathrm{~V}$	$V_{\text {(BR) }}$ DS	20	-	-	V
Gate 1 source breakdown voltage $\pm I_{\mathrm{G} 1 \mathrm{~s}}=10 \mathrm{~mA}, V_{\mathrm{G} 2 \mathrm{~s}}=V_{\mathrm{DS}}=0$	$\pm V_{\text {(BR) Giss }}$	8.5	-	14	
Gate 2 source breakdown voltage $\pm I \mathrm{G} 2 \mathrm{~s}=10 \mathrm{~mA}, V_{\mathrm{G} 1 \mathrm{~s}}=V_{\mathrm{Ds}}=0$	$\pm V_{\text {(BR) G2SS }}$	8.5	-	14	
Gate 1 source leakage current $\pm V_{\mathrm{G} 1 \mathrm{~S}}=5 \mathrm{~V}, V_{\mathrm{G} 2 \mathrm{~S}}=V_{\mathrm{DS}}=0$	$\pm I \mathrm{G} 1 \mathrm{ss}$	-	-	50	nA
Gate 2 source leakage current $\pm V_{\mathrm{G} 2 \mathrm{~S}}=5 \mathrm{~V}, V_{\mathrm{G} 1 \mathrm{~S}}=V_{\mathrm{DS}}=0$	\pm IG2ss	-	-	50	
Drain current $V_{\mathrm{DS}}=15 \mathrm{~V}, V_{\mathrm{G} 1 \mathrm{~S}}=0, V_{\mathrm{G} 2 \mathrm{~S}}=4 \mathrm{~V}$	Idss	4	-	20	mA
Gate 1 source pinch-off voltage $V_{\mathrm{DS}}=15 \mathrm{~V}, V_{\mathrm{G} 2 \mathrm{~s}}=4 \mathrm{~V}, I \mathrm{D}=20 \mu \mathrm{~A}$	- VG1s (p)	-	-	2.5	V
Gate 2 source pinch-off voltage $V_{\mathrm{DS}}=15 \mathrm{~V}, V_{\mathrm{G} 1 \mathrm{~S}}=0, I \mathrm{D}=20 \mu \mathrm{~A}$	- VG2S (p)	-	-	2.0	

Electrical Characteristics

at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.

Parameter	Symbol	Values			Unit
		min.	typ.	max.	

AC Characteristics

Forward transconductance $V \mathrm{DS}=15 \mathrm{~V}, I \mathrm{D}=10 \mathrm{~mA}, V \mathrm{G} 2 \mathrm{~S}=4 \mathrm{~V}, f=1 \mathrm{kHz}$	$g_{\text {fs }}$	12	17	-	mS
Gate 1 input capacitance $V_{\mathrm{DS}}=15 \mathrm{~V}, I \mathrm{D}=10 \mathrm{~mA}, V_{\mathrm{G} 2 \mathrm{~S}}=4 \mathrm{~V}, f=1 \mathrm{MHz}$	$C_{91 \text { ss }}$	-	3.6	-	pF
Gate 2 input capacitance $V_{\mathrm{DS}}=15 \mathrm{~V}, I \mathrm{D}=10 \mathrm{~mA}, V_{\mathrm{G} 2 \mathrm{~s}}=4 \mathrm{~V}, f=1 \mathrm{MHz}$	$C_{\text {g2ss }}$	-	1.6	-	
Feedback capacitance $V_{\mathrm{DS}}=15 \mathrm{~V}, I \mathrm{D}=10 \mathrm{~mA}, V_{\mathrm{G} 2 \mathrm{~s}}=4 \mathrm{~V}, f=1 \mathrm{MHz}$	$C_{\text {dg1 }}$	-	25	-	fF
Output capacitance $V_{\mathrm{DS}}=15 \mathrm{~V}, I \mathrm{D}=10 \mathrm{~mA}, V_{\mathrm{G} 2 \mathrm{~S}}=4 \mathrm{~V}, f=1 \mathrm{MHz}$	Cdss	-	1.6	-	pF
Power gain $\begin{aligned} & V \mathrm{DS}=15 \mathrm{~V}, I \mathrm{D}=10 \mathrm{~mA} \\ & f=200 \mathrm{MHz}, G \mathrm{G}=2 \mathrm{mS}, G \mathrm{~L}=0.5 \mathrm{mS} \\ & 2 \Delta f=12 \mathrm{MHz} \\ & \text { (see test circuit 1) } \end{aligned}$	$G_{\text {ps }}$	-	23	-	dB
Noise figure $\begin{aligned} & V \mathrm{DS}=15 \mathrm{~V}, I \mathrm{D}=10 \mathrm{~mA} \\ & f=200 \mathrm{MHz}, G \mathrm{G}=2 \mathrm{mS}, G \mathrm{~L}=0.5 \mathrm{mS} \\ & \text { (see test circuit 1) } \end{aligned}$	F	-	1.1	-	
$\begin{aligned} & \text { Gain control range } \\ & V_{\mathrm{Ds}}=15 \mathrm{~V}, V_{\mathrm{G} 2 \mathrm{~s}}=4 \ldots-2 \mathrm{~V}, f=200 \mathrm{MHz} \\ & \text { (see test circuit } 1 \text {) } \end{aligned}$	$\Delta G_{\text {ps }}$	-	50	-	
$\begin{aligned} & \text { Mixer gain (additive) } \\ & V_{\mathrm{Ds}}=15 \mathrm{~V}, V_{\mathrm{G} 2 \mathrm{~s}}=6 \mathrm{~V}, R \mathrm{~s}=220 \Omega \\ & f=200 \mathrm{MHz}, f \mathrm{~F}=36 \mathrm{MHz} \\ & 2 \Delta f \mathrm{~F}=5 \mathrm{MHz}, V_{\mathrm{osc}}=0.5 \mathrm{~V} \\ & \text { (see test circuit 2) } \end{aligned}$	$G_{\text {psc }}$	-	16	-	
$\begin{aligned} & \text { Mixer gain (multiplicative) } \\ & V_{\mathrm{DS}}=15 \mathrm{~V}, V_{\mathrm{G} 1 \mathrm{~S}}=1.7 \mathrm{~V}, V \mathrm{G} 2 \mathrm{~S}=2.5 \mathrm{~V} \\ & R \mathrm{~s}=220 \Omega, f=200 \mathrm{MHz}, f \mathrm{~F}=36 \mathrm{MHz} \\ & 2 \Delta f \mathrm{~F}=5 \mathrm{MHz}, V_{\mathrm{osc}}=2 \mathrm{~V} \\ & \text { (see test circuit 3) } \end{aligned}$	$G_{\text {psc }}$	-	18	-	

Total power dissipation $P_{\text {tot }}=f\left(T_{\mathrm{A}}\right)$

Gate 1 forward transconductance
$g_{\mathrm{fs} 1}=f\left(V_{\mathrm{G} 1 \mathrm{~s}}\right)$
$V_{\mathrm{Ds}}=15 \mathrm{~V}$, Idss $=10 \mathrm{~mA}, f=1 \mathrm{kHz}$

Output characteristics $I \mathrm{D}=f\left(V_{\mathrm{DS}}\right)$ $V_{\text {G2s }}=4 \mathrm{~V}$

Gate 1 forward transconductance $g_{\text {ts } 1}=f\left(V_{\mathrm{G} 2 \mathrm{~s}}\right)$
$V_{\mathrm{Ds}}=15 \mathrm{~V}$, Idss $=10 \mathrm{~mA}, f=1 \mathrm{kHz}$

Drain current $I \mathrm{D}=f\left(V_{\mathrm{Gis}}\right)$
$V_{\mathrm{ds}}=15 \mathrm{~V}$

Gate 2 input capacitance $C_{\text {gess }}=f\left(V_{\mathrm{G} 2 \mathrm{~s}}\right)$
$V_{\mathrm{G} 1 \mathrm{~S}}=0 \mathrm{~V}, V_{\mathrm{DS}}=15 \mathrm{~V}$
$I \mathrm{Dss}=10 \mathrm{~mA}, f=1 \mathrm{MHz}$

Gate 1 input capacitance $C_{\text {g1ss }}=f\left(V_{\mathrm{G} 1 \mathrm{~s}}\right)$
$V_{\mathrm{G} 2 \mathrm{~s}}=4 \mathrm{~V}, V_{\mathrm{Ds}}=15 \mathrm{~V}$
$I \mathrm{dss}=10 \mathrm{~mA}, f=1 \mathrm{MHz}$

Output capacitance $C_{\text {dss }}=f\left(V_{\mathrm{Ds}}\right)$
$V_{\mathrm{G} 1 \mathrm{~S}}=0 \mathrm{~V}, V_{\mathrm{G} 2 \mathrm{~s}}=4 \mathrm{~V}$
IDss $=10 \mathrm{~mA}, f=1 \mathrm{MHz}$

Gate 1 input admittance $y_{11 s}$

$V_{\mathrm{DS}}=15 \mathrm{~V}$, $V_{\mathrm{G} 2 \mathrm{~S}}=4 \mathrm{~V}$
(common source)

Gate 1 forward transfer admittance $y_{21 s}$
$V_{\mathrm{DS}}=15 \mathrm{~V}, V_{\mathrm{G} 2 \mathrm{~s}}=4 \mathrm{~V}$
(common source)

Output admittance $\boldsymbol{y}_{22 \mathrm{~s}}$

$V_{\mathrm{DS}}=15 \mathrm{~V}, V_{\mathrm{G} 2 \mathrm{~s}}=4 \mathrm{~V}$
(common source)

Power gain $G_{\mathrm{ps}}=f\left(V_{\mathrm{G} 2 \mathrm{~s}}\right)$
$V_{\mathrm{DS}}=15 \mathrm{~V}, V_{\mathrm{G} 1 \mathrm{~S}}=0 \mathrm{~V}, I \mathrm{DSS}=10 \mathrm{~mA}$ $f=200 \mathrm{MHz}$ (see test circuit 1)

Interference voltage for 1% cross modulation $V_{\text {int }(1 \%)}=f\left(\Delta G_{\mathrm{ps}}\right)^{1)}$
$V_{\mathrm{DS}}=15 \mathrm{~V}, V_{\mathrm{G} 1 \mathrm{~S}}=0, f=200 \mathrm{MHz}$
$f_{\text {int }}=221 \mathrm{MHz}$ (see test circuit 1)

Noise figure $F=f\left(V_{\mathrm{G} 2 \mathrm{~s}}\right)$
$V_{\mathrm{DS}}=15 \mathrm{~V}, V_{\mathrm{G} 1 \mathrm{~S}}=0 \mathrm{~V}, I_{\mathrm{DSS}}=10 \mathrm{~mA}$ $f=200 \mathrm{MHz}$ (see test circuit 1)

Interference voltage for 1% cross modulation $V_{\text {int }(1 \%)}=f\left(f_{\text {int }}\right)^{1)}$
$V_{\mathrm{DS}}=15 \mathrm{~V}, V_{\mathrm{G} 2 \mathrm{~S}}=4 \mathrm{~V}, V_{\mathrm{G} 1 \mathrm{~S}}=0$
$f=200 \mathrm{MHz}$ (see test circuit 1)

1) For footnote refer to the last page of this data sheet.

Mixer gain (additive) $G_{\text {psc }}=f\left(V_{\text {osc }}\right)$
$V \mathrm{D}=15 \mathrm{~V}, V_{\mathrm{G} 1 \mathrm{~S}}=0, V_{\mathrm{G} 2 \mathrm{~s}}=6 \mathrm{~V}$
$R \mathrm{~s}=220 \Omega$, Idss $=10 \mathrm{~mA}, f=200 \mathrm{MHz}$ fiF $=36 \mathrm{MHz}$ (see test circuit 2)

Mixer gain (additive) $G_{\mathrm{psc}}=f(R \mathrm{~s})$
$V_{\mathrm{D}}=15 \mathrm{~V}, V_{\mathrm{G} 1 \mathrm{~S}}=0, V_{\mathrm{G} 2 \mathrm{~S}}=6 \mathrm{~V}$
$V_{\text {osc }}=0.5 \mathrm{~V}, f=200 \mathrm{MHz}$
$f_{\text {IF }}=36 \mathrm{MHz}$ (see test circuit 2)

Mixer gain (additive) $\boldsymbol{G}_{\mathrm{psc}}=f\left(V_{\mathrm{G} 2 \mathrm{~s}}\right)$
$V_{\mathrm{D}}=15 \mathrm{~V}, V_{\mathrm{G} 1 \mathrm{~S}}=0, R \mathrm{~s}=220 \Omega$
$V_{\text {osc }}=0.5 \mathrm{~V}$, I Ioss $=10 \mathrm{~mA}, f=200 \mathrm{MHz}$
$f_{\text {IF }}=36 \mathrm{MHz}$ (see test circuit 2)

Mixer gain (multiplicative) $G_{\text {psc }}=f\left(V_{\mathrm{G} 2 \mathrm{~s}}\right)$
$V_{\mathrm{D}}=15 \mathrm{~V}, V_{\mathrm{G} 1 \mathrm{~S}}=1.7 \mathrm{~V}, R \mathrm{~s}=200 \Omega$
Idss $=10 \mathrm{~mA}, f=200 \mathrm{MHz}$
$f_{\text {IF }}=36 \mathrm{MHz}$ (see test circuit 3)

Test circuit 1 for power gain, noise figure and cross modulation $f=200 \mathrm{MHz}, G \mathrm{G}=2 \mathrm{mS}, G \mathrm{~L}=0.5 \mathrm{mS}$

Test circuit 2 for mixer gain (additive)
$f=200 \mathrm{MHz}, f_{\text {osc }}=236 \mathrm{MHz}, 2 \Delta f_{\mathrm{F}}=5 \mathrm{MHz}$

Test circuit 3 for mixer gain (multiplicative)

$f=200 \mathrm{MHz}, f_{\text {osc }}=236 \mathrm{MHz}, 2 \Delta f \mathrm{~F}=5 \mathrm{MHz}$

[^1]
[^0]: 1) For detailed information see chapter Package Outlines.
[^1]: 1) $V_{\mathrm{int}}(1 \%)$ is the rms value of half the emf (terminal voltage at matching) of a 100% sine modulated TV carrier at an internal generator resistance of 60Ω, causing 1% amplitude modulation on the active carrier.
