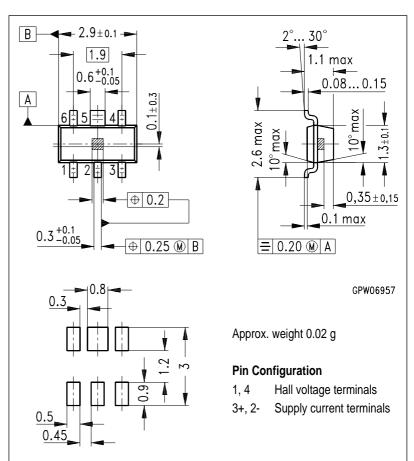
SIEMENS

Hall Sensor


KSY 16

Features

- Hall sensor on Cu-leadframe for SMT-technology, MW-6 package
- High sensitivity
- High temperature range
- Small linearity error
- Low offset voltage
- Low TC of sensitivity resistances
- This Hall sensor combines the avantages of nonmagnetic leadframe and SMT capability

Typical applications

- Rotation and position sensing
- Current and power
 measurement
- Magnetic field measurement
- Control of brushless DC
 motors

Dimensions in mm

Туре	Marking	Ordering Code
KSY 16	s16	on request

The KSY 16 is an ion-implanted Hall sensor in a monocrystalline GaAs-material, built into an SMT package (MW-6). It is outstanding for a high magnetic sensitivity and low temperature coefficients. The 0.35×0.35 mm² chip is mounted onto a non-magnetic leadframe. The active area is placed approx. 0.45 mm below the surface of the package.

Maximum ratings

Parameter	Symbol	Value	Unit
Operating temperature	T _A	- 40+ 150	°C
Storage temperature	T _{stg}	- 50+ 160	°C
Supply current	<i>I</i> ₁	7	mA
Thermal conductivity ¹⁾	G_{thC}	≥ 2.2	mW/K

Characteristics (T_A = 25 °C)

Nominal supply current	I _{1N}	5	mA
Open-circuit sensitivity	K _{B0}	190260	V/AT
Open-circuit Hall voltage $I = I_{1N}, B = 0.1 \text{ T}$	V ₂₀	95130	mV
Ohmic offset voltage $I = I_{1N}, B = 0$ T	V _{R20}	≤±20	mV
Linearity of Hall voltage B = 00.5 T B = 01 T	$egin{array}{c} F_{L} \ F_{L} \ \end{array}$	$\leq \pm 0.2$ $\leq \pm 0.7$	% %
Input resistance $B = 0$ T	<i>R</i> ₁₀	9001200	Ω
Output resistance $B = 0$ T	R ₂₀	9001200	Ω
Temperature coefficient of the open-circuit Hall voltage $I_1 = I_{1N}, B = 0.1$ T	TC _{V20}	~-0.030.07	%/K
Temperature coefficient of the internal resistance $B = 0$ T	<i>TC</i> _{R10, R20}	~ 0.10.18	%/K
Change of offset voltage within the temperature range ²⁾	$ \Delta V_{R0} $	≤ 2	mV

Connection of a Hall sensor with a power source

Since the voltage on the component must not exceed 10 V, the connection to the constant current supply should only be done via a short circuit by-pass. The by-pass circuit-breaker shall not be opened before turning on the power source. This is to avoid damage to the Hall sensor due to power peaks.

¹⁾ Thermal conductivity chip-ambient when mounted on alumina ceramic 15 mm \times 17 mm \times 0.7 mm

²⁾ AQL: 0.65