SIEMENS

FM-Sound IF with SCART Switch
and Volume Control

Bipolar IC

Features

- Outstanding limiting qualities
- Few external components
- Integrated de-emphasis resistor
- Low harmonic distortion factor

Type	Ordering Code	Package
TBA 121-5	Q67000-A5137	P-DIP-16

Functional Description

FM-IF amplifier, consisting in a limiter amplifier with FM demodulator. The AF section contains a SCART-record/playback switch as well as AF output with volume control. The control of the volume is controlled via an analog control input, and the SCART switch is controlled via a switch input.

Application

Application of the IC is intended in mono TV sets.

Circuit Description

In its FM section, the component contains an eight stage, symmetrical limiter amplifier with subsequent coincidence demodulator. The AF section contains an analog switch for the SCARTrecording / playback function as well as an analog volume control with AF output.

Pin Functions

Pin No.	Function
1	Ground
2	Limiter amplifier operating point feedback (RF decoupling of IF amplifier with appropriate capacitors is required!)
3	Limiter amplifier operating point feedback and low end (RF decoupling of IF amplifier with appropriate capacitors is required!)
4	IF-amplifier output (emitter follower)
5	IF-amplifier output (emitter follower) (if an $L C$ circuit is used, the Q is determined by the damping resistance across pins 6 and 7)
6	Demodulator input with high impedance input and internal $15 \mathrm{k} \Omega$ supply resistor (if an $L C$ circuit is used, the Q is determined by the damping resistance across pins 6 and 7)
7	Connection for de-emphasis capacitor (a series resistor of $11 \mathrm{k} \Omega$ is integrated)
8	AF output of the SCART interface (emitter follower with short circuit limiter)
9	AF input 1 of the SCART interface (IF branch)
10	Rec/Pb switch input
11	AF input 2 of the SCART interface (SCART input)
12	Volume control
13	IF output (emitter follower)
14	$+V_{S}$ supply voltage
15	IF input (limiter amplifier input; internal resistor between pin 16 and 3 typ. 800Ω)
16	

Expanded Block Diagram, Part 1

Expanded Block Diagram, Part 2

Block Diagram

Absolute Maximum Ratings

$T_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$

Parameter	Symbol	Limit Values		Unit
		min.	max.	
Supply voltage	V_{S}	0	16	V
IF-input voltage	V_{116} rms	0	600	mVrms
DC voltage	V_{2}	0	V_{REF}	V
DC voltage	V_{3}	0	V_{REF}	V
DC voltage	V_{6}	0	V_{S}	V
DC voltage	V_{7}	0	V_{S}	V
DC voltage	V_{8}	0	$V_{\mathrm{S}}-2$	V
DC voltage	V_{9}	0	V_{REF}	V
DC voltage	V_{11}	0	V_{S}	V
DC voltage	V_{12}	0	V_{S}	V
DC voltage	V_{13}	0	V_{S}	V
DC voltage	V_{16}	0	V_{REF}	V
DC current	I_{4}	0	2	mA
DC current	I_{5}	0	2	mA
DC current	I_{9}	-1	2	mA
DC current	I_{14}	-1	2	mA
Junction temperature	T_{j}		150	${ }^{\circ} \mathrm{C}$
Storage temperature	$T_{\text {stg }}$	-55	125	${ }^{\circ} \mathrm{C}$
Thermal resistance	$R_{\mathrm{th}} \mathrm{SA}$		80	$\mathrm{~K} / \mathrm{W}$
(system-air)				

Operating Range

Supply voltage	V_{S}	10.5	15.75	V
Frequency range	f	0.1	12	MHz
Ambient temperature in operation	T_{A}	0	70	${ }^{\circ} \mathrm{C}$

Characteristics

$T_{\mathrm{A}}=0$ to $70{ }^{\circ} \mathrm{C}$; $V_{\mathrm{S}}=10.5$ to 15.5 V ; refer to test circuit

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		
Current consumption	$I_{\text {S }}$	21	29	37	mA	
Input voltage for limiting response $\left(V_{\mathrm{Q} 9,14}=-3 \mathrm{~dB}\right)$	$V_{116 \mathrm{rms}}$		60	100	$\mu \mathrm{V}$	$\begin{aligned} & f_{116}=5.5 \mathrm{MHz} ; \\ & \Delta f=30 \mathrm{kHz} ; \\ & f_{\text {mod }}=1 \mathrm{kHz} \\ & \hline \end{aligned}$
SCART-output voltage	$V_{\text {Q } 9}$	500	650		mV	$\begin{aligned} & V_{116}=10 \mathrm{mV} ; \\ & \Delta f=30 \mathrm{kHz} ; \\ & f_{\text {mod }}=1 \mathrm{kHz} \\ & f_{\mid 16}=5.5 \mathrm{MHz} \\ & \hline \end{aligned}$
AF-output voltage	$V_{\text {Q } 14}$	450	650		mV	$\begin{aligned} & V_{13}=4.8 \mathrm{~V} ; \\ & \Delta f=30 \mathrm{kHz} ; \\ & f_{\text {mod }}=1 \mathrm{kHz} ; \\ & f_{\mathrm{I} 16}=5.5 \mathrm{MHz} \end{aligned}$
DC component	$V_{\text {Q } 9}$ $V_{\text {Q } 14}$		$\begin{array}{\|l\|} \hline 4.8 \\ 6 \end{array}$		$\begin{array}{\|l\|} \hline \mathrm{V} \\ \mathrm{~V} \end{array}$	$\begin{aligned} & V_{116}=10 \mathrm{mV} ; \\ & \Delta f=0 \\ & T H D=T H D_{\text {min }} \end{aligned}$
Total distortion factor	$\begin{aligned} & T H D_{9} \\ & T H D_{14} \end{aligned}$			$\begin{array}{\|l\|} \hline 1 \\ 1.1 \end{array}$	$\begin{aligned} & \hline \% \\ & \% \\ & \hline \end{aligned}$	$\begin{aligned} & \Delta f=30 \mathrm{kHz} ; \\ & V_{116}=10 \mathrm{mV} ; \\ & f_{\text {mod }}=1 \mathrm{kHz} \\ & f_{116}=5.5 \mathrm{MHz} \\ & V_{13}=4.8 \mathrm{~V} \end{aligned}$
AM suppression (test conditions for reference point)	$a_{\text {AM9, } 14}$	50	60		dB	$\begin{aligned} & V_{116}=500 \mu \mathrm{~V} ; \\ & m=30 \% ; \\ & f_{\mathrm{mod}}=1 \mathrm{kHz} ; \\ & f_{\mid 16}=5.5 \mathrm{MHz} ; \\ & \Delta f=30 \mathrm{kHz} ; \\ & V_{166}=10 \mathrm{mV} \\ & \hline \end{aligned}$
Volume control range	V_{14}	80			dB	$V_{13}=5-0 \mathrm{~V}$
Maximum SCARTinput voltage	V_{112}	2			Vrms	
Gain between SCART input (pin 10) and AF output (pin 14)	$G_{\text {SC }}$		0		dB	$\begin{aligned} & V_{11} \geq 8 \mathrm{~V} \leq 12 \mathrm{~V} \\ & V_{13}=4.8 \mathrm{~V} \end{aligned}$

Switching Voltage, Muting

ON (AF OFF)	V_{3}	8		$V_{\text {S }}$	V	
OFF	V_{3}	0		3	V	

Characteristics (cont'd)
$T_{\mathrm{A}}=0$ to $70{ }^{\circ} \mathrm{C}$; $V_{\mathrm{S}}=10.5$ to 15.5 V ; refer to test circuit

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		

Design Notes

Input resistance	$R_{16,7}$	10			$\mathrm{k} \Omega$	
Output resistance	$R_{\text {Q } 9}$			100	Ω	
Output resistance	$R_{\text {Q } 14}$			200	Ω	
Input resistance	$R_{110,12}$	20			k Ω	
Input impedance	Z_{116}		800		Ω	
Residual IF voltage	$V_{\text {Q9,14 (IF) }}$			10	mV	
Hum suppression $V_{\mathrm{S}} / V_{\mathrm{Q} 9,14}$ (without de-emphasis C)	$a_{\text {qh }}$		30		dB	$\begin{aligned} & \Delta V_{\mathrm{S}}=500 \mathrm{mVrms} \\ & f_{\mathrm{S}}=100 \mathrm{~Hz} \end{aligned}$
Crosstalk attenuation (test conditions for reference point)	$a_{\text {12-14 }}$	60			dB	$V_{12}=2 \mathrm{Vrms} ;$ RF mode: $\Delta f=30 \mathrm{kHz}$; $f_{\text {mod }}=1 \mathrm{kHz}$; $f_{116}=5.5 \mathrm{MHz}$ $V_{116}=10 \mathrm{mV}$
Attenuation IF MUTE	a_{14}	80			dB	$\begin{aligned} & f_{116}=5.5 \mathrm{MHz} ; \\ & V_{13}=4.8 \mathrm{~V} ; V_{116}=300 \\ & \mathrm{mV} ; f_{\text {mod }}=1 \mathrm{kHz} ; \\ & \Delta f=30 \mathrm{kHz} ; \\ & \text { IF MUTE }=\mathrm{ON} ; \\ & \text { measured } \\ & \text { selectively } \\ & \text { at } 1 \mathrm{kHz} \end{aligned}$

$L=10$ turns $0.2 \mathrm{Cul} ; Q_{\mathrm{b}} \sim 25$
eg. Vogt kit 5171200000

* = Styrolex capacitor

Test Circuit

Application Circuit

