SIEMENS

Overview

Bipolar IC

Features

- Max. driver current 1 A
- Integrated free-wheeling diodes
- Short-circuit proof to ground
- Inhibit
- ESD protected inputs
- Temperature range $-40^{\circ} \mathrm{C} \leq T_{\mathrm{j}} \leq 150^{\circ} \mathrm{C}$

Type	Ordering Code	Package
TLE 4205	Q67000-A9025	P-DIP-18-3
TLE 4205 G	Q67006-A9114	P-DSO-20-6

Description

TLE 4205 is an integrated power full-bridge DC-motor driver for a wide temperature range, as required in automotive applications for example. The circuit contains two power comparators that can be combined to a full-bridge circuit. For inductive loads there are integrated free-wheeling diodes to $+V_{\mathrm{S}}$ and ground. The outputs are shortcircuit proof up to 18 V supply voltage to ground and turn off when overtemperature occurs. This IC is especially suitable for headlight-beam adjustment in automobiles.

TLE 4205

TLE 4205 G

Figure 1 Pin Configuration (top view)

Pin Definitions and Functions

Pin No.	Symbol	Function
1	Q1	Output Q1 of channel 1; push-pull B output with DC short-circuit protection to ground. Integrated free-wheeling diodes to ground and the supply voltage.
2	V_{S}	Supply voltage $V_{s} ;$ must be blocked to ground with a ceramic capacitor of at least 100 nF directly on the pins of the IC.
3	Q2	Output Q2 of channel 2; see pin 1.
4	GND	Ground
5	- I2	Inverting input channel 2; to be wired according to general rules.
6	+ I2	Non-inverting input channel 2; to be wired according to general rules.
7	- I1	Non-inverting input channel 1; see pin 6. 8
9	Inverting input channel 1; see pin 5.	
$10-18$	GND	Inhibit; the IC is passive when this pin is open or connected to ground.

Pin Definitions and Functions (TLE 4205 G)

Pin No.	Symbol	Function
1	Q2	Output 2 of channel 2; push-pull B output with DC short-circuit protection to ground. Integrated free-wheeling diodes to ground and the supply voltage.
2	N.C.	Not connected
3	N.C.	Not connected
$4-7$	GND	Ground
8	- I2	Inverting input channel 2; to be wired according to general rules.
9	+ I2	Non-inverting input channel 2; to be wired according to general rules.
10	+ I1	Non-inverting input channel 1; see pin 9.
11	- I1	Inverting input channel 1; see pin 8.
12	INH	Inhibit; the IC is passive when this pin is open or connected to ground.
13	N.C.	Not connected
$14-17$	GND	Ground
18	N.C.	Not connected
19	Q1	Output Q1 of channel 1, see pin 1.
20	V_{S}	Supply voltage $V_{\mathrm{s}} ;$ must be blocked with a ceramic capacitor of at least 100 nF directly on the pins of the IC.

\qquad

Figure 2 Block Diagram

Circuit Description

The IC contains two amplifiers with typical open-loop gain of 80 dB at 500 Hz .
The input stages consist of PNP-differential amplifiers. This produces a common-mode input range of 0 V to nearly V_{S} and a maximum differential input voltage of V_{s}. The IC is guarded against ground shorts by an SOA-protective circuit. The output transistors are turned off if the chip temperature exceeds approx. $160^{\circ} \mathrm{C}$. The IC can be turned off by an inhibit input, which very much reduces current consumption.

Figure 3 Circuit Diagram

Absolute Maximum Ratings

$T_{\mathrm{j}}=-40$ to $150^{\circ} \mathrm{C}$

Parameter	Symbol	Limit Values		Unit	Remarks
		min.	max.		
Supply voltage	$V_{\text {S }}$	-0.3	45	V	-
Differential input voltage	$V_{\text {ID }}$	-	$\pm V_{\mathrm{s}}$	V	ΔV_{6-5} or ΔV_{7-8} TLE 4205 ΔV_{8-9} or ΔV_{10-11} TLE 4205 G
Output current	$I_{\text {Q }}$	-1	1	A	-
Supply current	$I_{\text {S }}$	2.5	3	A	-
Ground current	$I_{\text {GND }}$	-3	2.5	A	12
Input voltage	V_{1}	-15	$V_{\text {S }}$	V	$\begin{aligned} & V_{5} ; V_{6} ; V_{7} ; V_{8} \\ & \text { TLE 4205 } \\ & V_{8} ; V_{9} ; V_{10} ; V_{11} \\ & \text { TLE 4205 } \end{aligned}$
Inhibit input	$V_{\text {lnh }}$	-15	$V_{\text {S }}$	V	$\begin{aligned} & \hline V_{9} \text { TLE } 4205 \\ & V_{12} \text { TLE 4205G } \\ & \hline \end{aligned}$
Junction temperature	$T_{\text {j }}$	-	150	${ }^{\circ} \mathrm{C}$	-
Storage temperature	$T_{\text {stg }}$	-50	150	${ }^{\circ} \mathrm{C}$	-

Operating Range

Supply voltage	V_{S}	6	32	V	-
Case temperature	T_{C}	-40	105	${ }^{\circ} \mathrm{C}$	$P_{\mathrm{Dmax}}=3 \mathrm{~W} ; \mathrm{DIP}$
Case temperature	T_{C}	-40	95	${ }^{\circ} \mathrm{C}$	$P_{\mathrm{Dmax}}=3 \mathrm{~W} ; \mathrm{SO}$
Thermal resistance					
junction - ambient	$R_{\mathrm{th} ~ J A}$	-	60	K/W	TLE 4205
junction - case					

Outputs pin 1 (19) and pin 3 (1) short-circuit proof to GND at $V_{\mathrm{S}} \leq 18 \mathrm{~V}$ for TLE 4205 (TLE 4205G)

Characteristics

$6 \mathrm{~V}<V_{\mathrm{S}}<18 \mathrm{~V} ;-40^{\circ} \mathrm{C}<T_{\mathrm{j}}<150^{\circ} \mathrm{C}$

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		

General

Open-circuit current consumption	$I_{\text {S }}$	-	10	30	mA	active, both outputs high
Open-circuit current consumption	$I_{\text {S }}$	-	10	100	$\mu \mathrm{A}$	inhibit
Turn-ON dead time ref. to $V_{9 \text { off/on }}$	$t_{\text {d ON }}$	-	10	20	$\mu \mathrm{s}$	$\left\|I_{1,3}\right\|<1 \mathrm{~A}$ TLE 4205 $\left\|I_{1,19}\right\|<1 \mathrm{~A}$ TLE 4205 G
Turn-OFF dead time ref. to $V_{9 \text { off/on }}$	$t_{\text {d OFF }}$	-	10	20	$\mu \mathrm{s}$	$\left\|I_{1,3}\right\|<1 \mathrm{~A}$ TLE 4205 $\left\|I_{1,19}\right\|<1 \mathrm{~A}$ TLE 4205 G
Open-loop gain	$G_{\text {vo }}$	50	80	-	dB	$f=500 \mathrm{~Hz}$

Inputs

Input zero voltage	$V_{\mathrm{⿺O}}$	-7.5	-	7.5	mV	$R_{\mathrm{S}}=10 \mathrm{k} \Omega ;$	
Input-voltage drift	$\Delta V_{\mathrm{lO}} \Delta T$	-	20	30	$\mu \mathrm{~V} / \mathrm{K}$	-	
Input zero current	$I_{\mathrm{⿺O}}$	-75	-	75	mA	-	
Input current	I_{l}	-300	-	300	nA	-	
Input-current drift	$\Delta I_{\\|} \Delta T$	-	-	5	nA / K	-	
Input common-mode range, positive	V_{IC}	-	-	$V_{\mathrm{S}}-2$	V	-	
Input common-mode range, negative	V_{IC}	-	-	-0.5	V	-	
Power-supply rejection ratio	$P S S R$	-	-	200	$\mu \mathrm{~V} / \mathrm{V}$	$R_{\mathrm{S}}=10 \mathrm{k} \Omega ;$	
Common-mode rejection ratio	$C M R R$	70	80	-	dB	-	

Characteristics (cont'd)
$6 \mathrm{~V}<V_{\mathrm{s}}<18 \mathrm{~V} ;-40^{\circ} \mathrm{C}<T_{\mathrm{j}}<150^{\circ} \mathrm{C}$

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		

Outputs

Saturation voltage	$V_{\mathrm{Sat} \mathrm{U}}$	-	1.35	1.5	V	$I_{\mathrm{Q}}=-0.6 \mathrm{~A}$
Saturation voltage	$V_{\mathrm{Sat} L}$	-	0.8	1.2	V	$I_{\mathrm{Q}}=0.6 \mathrm{~A}$
Forward voltage of free-wheeling diode	V_{FU}	-	1	1.5	V	$I_{\mathrm{F}}=0.6 \mathrm{~A}$
Forward voltage of free-wheeling diode	V_{FL}	-	1	1.5	V	$I_{\mathrm{F}}=0.6 \mathrm{~A} ;$
Slew rate of V_{Q}	$\mathrm{d} V_{\mathrm{q}} \mathrm{d} t_{\mathrm{r}}$	-	0.5	-	$\mathrm{V} / \mu \mathrm{s}$	-

Inhibit Input

Switching threshold high	V_{IH}	2	-	-	V	-
Switching threshold low	V_{IL}	-	-	0.8	V	-
H-input current	I_{H}	-	100	-	$\mu \mathrm{A}$	$V_{9}=5 \mathrm{~V}$
L-input current	I_{IH}	-	0	-	$\mu \mathrm{A}$	$V_{9}=0 \mathrm{~V}$

Note: $V_{\text {Sat }}=$ upper
$V_{\text {Sat } L}=$ lower
\qquad

Figure 4 Test Circuit

Figure 5 Application Circuit

Forward Voltage of the
Free-Wheeling Diodes versus
Junction Temperature

Saturation Voltage versus Junction Temperature

Start Point of the SOAProtection Circuit versus Junction Temperature

Current Consumption versus

 Junction Temperature

Package Outlines

Sorts of Packing

Package outlines for tubes, trays etc. are contained in our
Data Book "Package Information".
Dimensions in mm

P-DSO-20-6

(Plastic Dual Small Outline Package)

1) Does not include plastic or metal protrusions of 0.15 max per side
2) Does not include dambar protrusion of 0.05 max per side

Sorts of Packing

Package outlines for tubes, trays etc. are contained in our
Data Book "Package Information".
SMD = Surface Mounted Device
Dimensions in mm

