$2 \mathrm{M} \times 32$ SDRAM
 512K x 32bit x 4 Banks Synchronous DRAM LVTTL(3.3V)
 Extended Temperature 86-TSOP

Revision 1.4

December 2001

Samsung Electronics reserves the right to change products or specification without notice.

Revision History

Revision 1.4 (December 4, 2001)

- Not supported 90-Ball FBGA

Revision 1.3 (October 24, 2001)

- Removed CAS Latency 1 from the spec.

Revision 1.2 (August 7, 2001) - Target

- Added CAS Latency 1

Revision 1.1 (July 6, 2001)

- Added K4S643232E-T/S(E/N)50

Revision 1.0 (April 6, 2001)
Revision 0.0 (March 21, 2001)

- Initial draft
- Extended temperature $\left(-25^{\circ} \mathrm{C} \sim 85^{\circ} \mathrm{C}\right)$
-3.3V Power supply (VDD \&VDDQ)
- Supported 90-ball FBGA as well as 86 - TSOP

512K x 32Bit x 4 Banks Synchronous DRAM

FEATURES

- 3.3V power supply
- LVTTL compatible with multiplexed address
- Four banks operation
- MRS cycle with address key programs
-. CAS latency (2 \& 3)
-. Burst length (1, 2, 4, 8 \& Full page)
-. Burst type (Sequential \& Interleave)
- All inputs are sampled at the positive going edge of the system clock
- Burst read single-bit write operation
- DQM for masking
- Auto \& self refresh
- 15.6 us refresh duty cycle($4 \mathrm{~K} / 64 \mathrm{~ms}$)
- Extended Temperature range : $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

GENERAL DESCRIPTION

The K4S643232E is $67,108,864$ bits synchronous high data rate Dynamic RAM organized as $4 \times 524,288$ words by 32 bits, fabricated with SAMSUNG's high performance CMOS technology. Synchronous design allows precise cycle control with the use of system clock. I/O transactions are possible on every clock cycle. Range of operating frequencies, programmable burst length and programmable latencies allow the same device to be useful for a variety of high bandwidth, high performance memory system applications.

ORDERING INFORMATION

Part NO.	Max Freq.	Interface	Package
K4S643232E-TE/N50	200 MHz		86
K4S643232E-TE/N60	166 MHz		
K4S643232E-TE/N70	143 MHz		

- $-\mathrm{E} / \mathrm{N}$: Extended temperature $\left(-25^{\circ} \mathrm{C}-85^{\circ} \mathrm{C}\right)$

FUNCTIONAL BLOCK DIAGRAM

* Samsung Electronics reserves the right to change products or specification without notice.

PIN CONFIGURATION (Top view)
86 - TSOP

86Pin TSOP (II)
($400 \mathrm{mil} \times 875 \mathrm{mil}$)
(0.5 mm Pin pitch)

PIN FUNCTION DESCRIPTION

Pin	Name	Input Function
CLK	System clock	Active on the positive going edge to sample all inputs.
$\overline{\text { CS }}$	Chip select	Disables or enables device operation by masking or enabling all inputs except CLK, CKE and DQM.
CKE	Clock enable	Masks system clock to freeze operation from the next clock cycle. CKE should be enabled at least one cycle prior to new command. Disables input buffers for power down mode.
A0 ~ A10	Address	Row/column addresses are multiplexed on the same pins. Row address : RAo ~ RA10, Column address : CAo ~ CA7
BA0,1	Bank select address	Selects bank to be activated during row address latch time. Selects bank for read/write during column address latch time.
$\overline{\text { RAS }}$	Row address strobe	Latches row addresses on the positive going edge of the CLK with $\overline{\mathrm{RAS}}$ low. Enables row access \& precharge.
$\overline{\mathrm{CAS}}$	Column address strobe	Latches column addresses on the positive going edge of the CLK with $\overline{\mathrm{CAS}}$ low. Enables column access.
$\overline{\text { WE }}$	Write enable	Enables write operation and row precharge. Latches data in starting from CAS, WE active.
DQMO ~3	Data input/output mask	Makes data output Hi-Z, tsHz after the clock and masks the output. Blocks data input when DQM active.
DQ0 ~31	Data input/output	Data inputs/outputs are multiplexed on the same pins.
VDD/Vss	Power supply/ground	Power and ground for the input buffers and the core logic.
VDDQ/VssQ	Data output power/ground	Isolated power supply and ground for the output buffers to provide improved noise immunity.
NC	No Connection	This pin is recommended to be left No connection on the device.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Voltage on any pin relative to Vss	VIN, VouT	$-1.0 \sim 4.6$	V
Voltage on VDD supply relative to Vss	VDD, VDDQ	$-1.0 \sim 4.6$	V
Storage temperature	TSTG	$-55 \sim+150$	${ }^{\circ} \mathrm{C}$
Power dissipation	Pd	1	W
Short circuit current	los	50	mA

Note : Permanent device damage may occur if "ABSOLUTE MAXIMUM RATINGS" are exceeded.
Functional operation should be restricted to recommended operating condition.
Exposure to higher than recommended voltage for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS

-Recommended operating conditions (Voltage referenced to Vss $=0 \mathrm{~V}, \mathrm{TA}=-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Min	Typ	Max	Unit	Note
Supply voltage	VDD, VDDQ	3.0	3.3	3.6	V	
Input logic high voltage	VIH	2.0	3.0	VDDQ +0.3	V	
Input logic low voltage	VIL	-0.3	0	0.8	V	
Output logic high voltage	VoH	2.4	-	-	V	$\mathrm{IOH}=-2 \mathrm{~mA}$
Output logic low voltage	VOL	-	-	0.4	V	$\mathrm{lOL}=2 \mathrm{~mA}$
Input leakage current	ILI	-10	-	10	uA	

Notes: 1. $\mathrm{V}_{\mathrm{IH}}(\max)=5.6 \mathrm{~V}$ AC. The overshoot voltage duration is $\leq 3 \mathrm{~ns}$.
2. $\mathrm{VIL}(\min)=-2.0 \mathrm{~V}$ AC. The undershoot voltage duration is $\leq 3 \mathrm{~ns}$.
3. Any input $0 \mathrm{~V} \leq \mathrm{VIN} \leq \mathrm{VDDQ}$,

Input leakage currents include $\mathrm{Hi}-\mathrm{Z}$ output leakage for all bi-directional buffers with Tri-State outputs.
4. The VDD condition of K4S643232E-60 is $3.135 \mathrm{~V} \sim 3.6 \mathrm{~V}$

CAPACITANCE (VDd $\left.=3.3 \mathrm{~V}, \mathrm{TA}=23^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{Vref}=1.4 \mathrm{~V} \pm 200 \mathrm{mV}\right)$

Pin	Symbol	Min	Max	Unit
Clock	CcLK	-	4	pF
$\overline{\text { RAS }, \overline{C A S}, \overline{W E}, ~} \overline{\mathrm{CS}}, \mathrm{CKE}, \mathrm{DQM}$	CIN	-	4.5	pF
Address	CADD	-	4.5	pF
DQ0 \sim DQ31	Cout	-	6.5	pF

DC CHARACTERISTICS

(Recommended operating condition unless otherwise noted, $\mathrm{TA}=-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{VIH}(\min) / \mathrm{VIL}(\max)=2.0 \mathrm{~V} / 0.8 \mathrm{~V}$)

Parameter	Symbol	Test Condition	CAS Latency	Speed			Unit	Note
				-50	-60	-70		
Operating Current (One Bank Active)	IcC1	Burst Length =1 $\operatorname{trc} \geq \operatorname{tRC}(\min), \quad \mathrm{tcc} \geq \mathrm{tcc}(\min), \quad \mathrm{lo}=$ 0 mA	3	175	170	155	mA	2
			2	150	150	150		
Precharge Standby Current in power-down mode	ICC2P	$\mathrm{CKE} \leq \mathrm{VIL}(\mathrm{max}), \mathrm{tcC}=15 \mathrm{~ns}$		3			mA	
	Icc2PS	CKE \& CLK $\leq \operatorname{VIL}(\max)$, $\mathrm{tcc}=\infty$		2				
Precharge Standby Current in non power-down mode	Icc2N	$C K E \geq \mathrm{V}_{\mathrm{IH}}(\min), \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{IH}}(\min)$, tcc $=15 \mathrm{~ns}$ Input signals are changed one time during 30ns		20			mA	
	IccanS	$\left.C K E \geq \mathrm{VIH}^{(m i n}\right), \mathrm{CLK} \leq \mathrm{VIL}(\max), \mathrm{tcc}=\infty$ Input signals are stable		10				
Active Standby Current in power-down mode	Icc3 P	CKE $\leq \mathrm{VIL}(\mathrm{max})$, tcc $=15 \mathrm{~ns}$		7			mA	
	Icc3PS	CKE \leq VIL (\max), tcc $=\infty$		5				
Active Standby Current in non power-down mode (One Bank Active)	Icc3 N	$C K E \geq V_{I H}(\min), \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{IH}}(\mathrm{min})$, tcC $=15 \mathrm{~ns}$ Input signals are changed one time during 30 ns		55			mA	
	Icc3NS	$\mathrm{CKE} \geq \mathrm{V} \mathrm{H}(\mathrm{min}), \mathrm{CLK} \leq \mathrm{VIL}(\max), \mathrm{tcC}=\infty$ Input signals are stable		40				
Operating Current (Burst Mode)	IcC4	$\mathrm{lo}=0 \mathrm{~mA}$, Page Burst All bank Activated, $\mathrm{tccD}=\operatorname{tccD}(\mathrm{min})$	3	190	180	170	mA	2
			2	150	150	150		
Refresh Current	Icc5	$\operatorname{tRC} \geq \operatorname{tRC}(\min)$	3	190	185	165	mA	3
			2	160	160	160		
Self Refresh Current	Icc6	CKE $\leq 0.2 \mathrm{~V}$		3			mA	4
				450			uA	5

Notes : 1. Unless otherwise notes, Input level is CMOS(VIH/VIL=VDDQ/VSSQ) in LVTTL.
2. Measured with outputs open.
3. Refresh period is 64 ms .
4. K4S643232E-E**
5. K4S643232E-N**

AC OPERATING TEST CONDITIONS ($\mathrm{VDD}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{TA}=-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Value	Unit
AC input levels (Vih/Vil)	$2.4 / 0.4$	V
Input timing measurement reference level	1.4	V
Input rise and fall time	$\operatorname{tr} / \mathrm{tf}=1 / 1$	ns
Output timing measurement reference level	1.4	V
Output load condition	See Fig. 2	

(Fig. 1) DC output load circuit

(Fig. 2) AC output load circuit

Notes:1. The VDD condition of K4S643232E-60 is $3.135 \mathrm{~V} \sim 3.6 \mathrm{~V}$
OPERATING AC PARAMETER
(AC operating conditions unless otherwise noted)

Parameter		Symbol	Version						Unit	Note	
		-50	-60		-70						
CAS Latency			CL	3	2	3	2	3	2	CLK	
CLK cycle time		tcc(min)	5	10	6	10	7	10	ns		
Row active to row		trRD(min)							CLK	1	
$\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ delay		trCD (min)	3	2	3	2	3	2	CLK	1	
Row precharge		tRP (min)	3	2	3	2	3	2	CLK	1	
Row active time		tRAS(min)	8	5	7	5	7	5	CLK	1	
		trAS(max)	100						us		
Row cycle time		trC(min)	11	7	10	7	10	7	CLK	1	
Last data in to row		tRDL(min)	2						CLK	2	
Last data in to new	ess delay	tCDL(min)	1						CLK	2	
Last data in to bur		tBDL(min)	1						CLK	2	
Col. address to	delay	tcci (min)	1						CLK	3	
Mode Register S		tMRS(min)	2						CLK		
Number of valid output data	CAS Latency=3		2						ea	4	
	CAS Latency=2		1								

Note : 1. The minimum number of clock cycles is determined by dividing the minimum time required with clock cycle time and then rounding off to the next higher integer. Refer to the following ns-unit based AC table.

Parameter	Symbol	Version			Unit
		-50	-60	-70	
Row active to row active delay	tRRD(min)	10	12	14	ns
$\overline{\mathrm{RAS}}$ to $\overline{\mathrm{CAS}}$ delay	tRCD (min)	15	18	20	ns
Row precharge time	tRP(min)	15	18	20	ns
Row active time	tRAS (min)	40	42	49	ns
	tRAS(max)	100			us
Row cycle time	trC(min)	55	60	70	ns

2. Minimum delay is required to complete write.
3. All parts allow every cycle column address change.
4. In case of row precharge interrupt, auto precharge and read burst stop.

AC CHARACTERISTICS (AC operating conditions unless otherwise noted)

Parameter		Symbol	-50		-60		-70		Unit	Note	
		Min	Max	Min	Max	Min	Max				
CLK cycle time	CAS Latency=3		tcc	5	1000	6	1000	7	1000	ns	1
	CAS Latency=2	10		10		10					
CLK to valid output delay	CAS Latency=3	tsac	-	4.5	-	5.5	-	5.5	ns	1,2	
	CAS Latency=2		-	6	-	6	-	6			
Output data hold time		toн	2	-	2	-	2	-	ns	2	
CLK high pulse width	CAS Latency=3	tch	2	-	2.5	-	3	-	ns	3	
	CAS Latency=2		3	-	3	-	3	-			
CLK Iow pulse width	CAS Latency=3	tcL	2	-	2.5	-	3	-	ns	3	
	CAS Latency=2		3	-	3	-	3	-			
Input setup time	CAS Latency=3	tss	1.5	-	1.5	-	1.75	-	ns	3	
	CAS Latency=2		2.5	-	2.5	-	2.5	-			
Input hold time		ts ${ }^{\text {r }}$	1	-	1	-	1	-	ns	3	
CLK to output in Low-Z		tsLz	1	-	1	-	1	-	ns	2	
CLK to output	CAS Latency=3		-	4.5	-	5.5	-	5.5			
in Hi-Z	CAS Latency=2		-	6	-	6	-	6			

Note : 1. Parameters depend on programmed CAS latency.
2. If clock rising time is longer than 1 ns , (tr/2-0.5) ns should be added to the parameter.
3. Assumed input rise and fall time ($\mathrm{tr} \& \mathrm{tf}$) $=1 \mathrm{~ns}$.

If $\mathrm{tr} \& \mathrm{tf}$ is longer than 1 ns , transient time compensation should be considered,
i.e., $[(\mathrm{tr}+\mathrm{tf}) / 2-1] \mathrm{ns}$ should be added to the parameter.

SIMPLIFIED TRUTH TABLE

Command			CKEn-1	CKEn	$\overline{\text { CS }}$	$\overline{\text { RAS }}$	$\overline{\text { CAS }}$	$\overline{\mathrm{WE}}$	DQM	BA0, 1	A10/AP	$\mathrm{Ag}_{\sim}^{\sim} \sim \mathrm{A}^{\text {a }}$	Note			
Register	Mode register set		H	X	L	L	L	L	X	OP code			1,2			
Refresh	Auto refresh		H	H	L	L	L	H	X	X			3			
	Self refresh	Entry		L									3			
		Exit	L	H	L	H	H	H	X	X			3			
					H	X	X	X					3			
Bank active \& row addr.			H	X	L	L	H	H	X	V	Row address					
Read \& column address	Auto precharge disable		H	X	L	H	L	H	X	V	L	$\begin{aligned} & \text { Column } \\ & \text { address } \\ & \left(A_{0} \sim \sim \text { P }\right) \end{aligned}$	4			
	Auto prech	e enable									H		4,5			
Write \& column address	Auto precharge disable		H	X	L	H	L	L	X	V	L	$\begin{aligned} & \text { Column } \\ & \text { address } \\ & \left(\mathrm{A}_{0} \sim \mathrm{~A}_{\mathrm{I}}\right) \end{aligned}$	4			
	Auto prech	e enable									H		4,5			
Burst Stop			H	X	L	H	H	L	X	X			6			
Precharge	Bank selection		H	X	L	L	H	L	X	V	L	X				
	All banks									X	H					
Clock suspend or active power down		Entry	H	L	H	X	X	X	X	X						
		L			V	V	V									
		Exit	L	H	X	X	X	X	X							
Precharge power down mode			Entry	H	L	H	X	X	X	X	X					
		L				H	H	H								
		Exit	L	H	H	X	X	X	X							
		L			V	V	V									
DQM			H	X					V		X		7			
No operation command			H	X	H	X	X	X	X	X						
			L		H	H	H									

(V=Valid, X=Don't care, $\mathrm{H}=$ Logic high, $\mathrm{L}=$ Logic low)
Notes :1. OP Code : Operand code
A 0 ~ A10 \& BA 0 ~ BA1 : Program keys. (@ MRS)
2. MRS can be issued only at all banks precharge state.

A new command can be issued after 2 CLK cycles of MRS.
3. Auto refresh functions are as same as CBR refresh of DRAM.

The automatical precharge without row precharge command is meant by "Auto".
Auto/self refresh can be issued only at all banks precharge state.
4. $\mathrm{BA}_{0} \sim \mathrm{BA}_{1}$: Bank select addresses.

If both $B A 0$ and $B A_{1}$ are "Low" at read, write, row active and precharge, bank A is selected.
If both BAo is "Low" and BA1 is "High" at read, write, row active and precharge, bank B is selected. If both $B A \circ$ is "High" and $B A_{1}$ is "Low" at read, write, row active and precharge, bank C is selected. If both $\mathrm{BA} \mathrm{A}_{0}$ and BA_{1} are "High" at read, write, row active and precharge, bank D is selected.
If $\mathrm{A}_{10} / \mathrm{AP}$ is "High" at row precharge, BA0 and BA_{1} is ignored and all banks are selected.
5. During burst read or write with auto precharge, new read/write command can not be issued.

Another bank read/write command can be issued after the end of burst.
New row active of the associated bank can be issued at tRP after the end of burst.
6. Burst stop command is valid at every burst length.
7. DQM sampled at positive going edge of a CLK and masks the data-in at the very CLK (Write DQM latency is 0), but makes $\mathrm{Hi}-\mathrm{Z}$ state the data-out of 2 CLK cycles after. (Read DQM latency is 2)

MODE REGISTER FIELD TABLE TO PROGRAM MODES

Register Programmed with MRS

Address	$\mathrm{BA} 0 \sim \mathrm{BA} 1$	A10/AP	A9	A8	A7	A6	A5	A4	A3	A2	A1	Ao
Function	RFU	RFU	W.B.L	TM		CAS Latency			BT	Burst Length		

Test Mode			CAS Latency				Burst Type		Burst Length				
A8	A7	Type	A6	A5	A4	Latency	А3	Type	A2	A1	A0	BT = 0	BT = 1
0	0	Mode Register Set	0	0	0	Reserved	0	Sequential	0	0	0	1	1
0	1	Reserved	0	0	1	Reserved	1	Interleave	0	0	1	2	2
1	0	Reserved	0	1	0	2			0	1	0	4	4
1	1	Reserved	0	1	1	3			0	1	1	8	8
Write Burst Length			1	0	0	Reserved			1	0	0	Reserved	Reserved
A9		Length	1	0	1	Reserved			1	0	1	Reserved	Reserved
0		Burst	1	1	0	Reserved			1	1	0	Reserved	Reserved
1		Single Bit	1	1	1	Reserved			1	1	1	Full Page	Reserved

Full Page Length : x32 (256)

POWER UP SEQUENCE

SDRAMs must be powered up and initialized in a predefined manner to prevent undefined operations.

1. Apply power and start clock. Must maintain CKE= "H", DQM= "H" and the other pins are NOP condition at the inputs.
2. Maintain stable power, stable clock and NOP input condition for a minimum of 200 us .
3. Issue precharge commands for all banks of the devices.
4. Issue 2 or more auto-refresh commands.
5. Issue a mode register set command to initialize the mode register.
cf.) Sequence of $4 \& 5$ is regardless of the order.
The device is now ready for normal operation.
Note : 1. If A9 is high during MRS cycle, "Burst Read Single Bit Write" function will be enabled.
6. RFU (Reserved for future use) should stay "0" during MRS cycle.

BURST SEQUENCE (BURST LENGTH = 4)

Initial Address		Sequential				Interleave			
A1	Ao								
0	0	0	1	2	3	0	1	2	3
0	1	1	2	3	0	1	0	3	2
1	0	2	3	0	1	2	3	0	1
1	1	3	0	1	2	3	2	1	0

BURST SEQUENCE (BURST LENGTH = 8)

Initial Address			Sequential								Interleave							
A2	A1	A0																
0	0	0	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7
0	0	1	1	2	3	4	5	6	7	0	1	0	3	2	5	4	7	6
0	1	0	2	3	4	5	6	7	0	1	2	3	0	1	6	7	4	5
0	1	1	3	4	5	6	7	0	1	2	3	2	1	0	7	6	5	4
1	0	0	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3
1	0	1	5	6	7	0	1	2	3	4	5	4	7	6	1	0	3	2
1	1	0	6	7	0	1	2	3	4	5	6	7	4	5	2	3	0	1
1	1	1	7	0	1	2	3	4	5	6	7	6	5	4	3	2	1	0

