TABLE OF CONTENTS

1.	GENERAL DESCRIPTION	1
2.	FEATURES	1
3.	ORDERING INFORMATION	1
5.	FUNCTIONAL BLOCK DESCRIPTIONS	3
	LCD Polarity Reverse Signal Generator	3
	Clock Signal Generator	3
	-V1 Discharge Circuit	3
	Column Driver Voltage Generator	3
	Row Driver Voltage Generator	3
	Row Driver Voltage Conversion Circuit	3
	VDD_ROW Voltage Generator	3
	+V1 Voltage Generator	3
6.	PINS ASSIGNMENT	4
7.	PIN DESCRIPTION	5
8.	DC CHARACTERISTICS	8
	Maximum Ratings	8
	9. Electrical Characteristics	9
10	. AC CHARACTERISTICS	10
	Input Timing Characteristics	10
	Output Timing Characteristics	11
11	. EXPLANATION OF FUNCTIONS	12
	LCD Polarity Reverse Signal Generator	13
	Clock Signal Generator	14
	Driver Voltage Generator	14

	Contrast Control Circuit	15
	+V1 Voltage Generator	15
	-V1 and +V1 Discharge Circuit	16
	Power Up and Power Down Sequence	16
12.	APPLICATION CIRCUIT (SSD1730 5X STEP-UP MODE)	17
13.	PACKAGE DIMENSIONS	18

SSD1730

Advanced Infomation

SSD1730 MLA Power Chip CMOS

1. GENERAL DESCRIPTION

The SSD1730 is a power chip for operating four-line MLA (Multi Line Addressing) LCD drivers. It consists of a CMOS charge pump-type voltage converter that can generate all the bias voltages required for the four-line MLA drive based on a single power supply input.

This can be used for the system that is formed by a column (segment) driver such as SSD1870 and a row (common) driver such as SSD1881. Such type of display system is able to produce a module with lower power consumption when comparing with the conventional driving method.

2. FEATURES

- Single Power Supply Operation, +2.4V to +3.6V
- Low current consumption
- Two step-up modes, 5X or 6X step-up by internal charge pump DC/DC converter
- Internal LCD voltage generator to generate all LCD voltages required for 4-line MLA driving
- External contrast control
- Internal –V1 discharge circuit to discharge the residual charge at the row driver negative voltage-side power supply voltage terminal –V1
- Internal "power off" function using an external signal
- Equipped internally with a LCD polarity reverse signal generator
- Polarity reversed period in the range of 2P to 17P
- Available in 48 pin QFP package (0.5 mm terminal pitch)

3. ORDERING INFORMATION

Ordering Part Number	Package Dimension	Package Form
SSD1730QL3	7 mm x 7mm	48 LQFP

Table 1 - Ordering Information

This document contains information on a new product. Specifications and information herein are subject to change without notice. IC manufactured under Motif license including U.S. Patent No. 5,420,604

4. BLOCK DIAGRAM

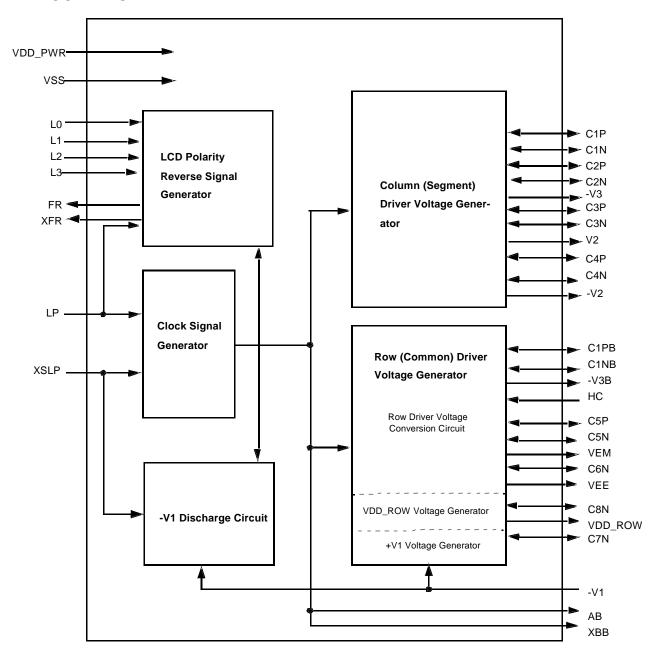


Figure 1 - Block Diagram

5. FUNCTIONAL BLOCK DESCRIPTIONS

LCD Polarity Reverse Signal Generator

This circuit generates the polarity reverse signals FR and XFR from the pulse signal LP. The polarity reversal interval is controlled by four pins L0, L1, L2 & L3 and the range is from 2P to 17P (1P is equal to one LP period), Table 15 shows their relationship. The polarity of the FR signal and the XFR signal are mutually opposite, so that the upper and lower screens can be driven mutually in opposite phases when a two-screen drive panel is used.

Clock Signal Generator

This circuit generates the clock for the charge pump from the pulse signal LP. When the display control signal XSLP is set to VSS, the clock will stop and the voltage converter will halt. For normal display mode, XSLP must be tied to VDD_PWR. Besides, this circuit also generates the signals AB & XBB which are the clocks for the column driver voltage generator and the row driver voltage generator. Figure 7 shows their timing characteristics.

-V1 Discharge Circuit

When the display is off or the power is off, this circuit will discharge the residual charges at the negative voltage level-side power supply voltage terminal -V1 of the row driver.

Column Driver Voltage Generator

This circuit accompanying with external components generates voltages for column driver. In SSD1730, three voltage outputs including V2, -V2 and -V3 will be generated and their voltage levels are based on the supply voltage VDD_PWR. Their relationship is V2 = VDD_PWR/2, -V2 = -(VDD_PWR/2) and -V3 = -VDD_PWR.

Row Driver Voltage Generator

This voltage generator consists of three circuits (1) Row driver voltage conversion circuit, (2) VDD_ROW voltage generator and (3) +V1 voltage generator.

Row Driver Voltage Conversion Circuit

This circuit generates VEE voltage which is used to generate +V1 & -V1 power supply voltages for row driver. There are two step-up modes 5X and 6X which are set by the HC pin. When HC pin is tied to VSS, 5X step-up mode is chosen. When HC pin is tied to -V3B, 6X step-up mode is chosen.

In SSD1730, VDD_PWR is taken as the reference, VEE is equal to -4 x VDD_PWR at 5X step-up mode while VEE is equal to -5 x VDD PWR at 6X step-up mode.

For the contrast adjustment, it is performed through the use of an external emitter follower circuit to adjust VEE to generate –V1, this contrast control circuit is shown in Figure 9.

VDD_ROW Voltage Generator

VDD_ROW voltage generator is used to generate VDD_ROW, which is the power supply to the logic circuit of a row driver.

+V1 Voltage Generator

+V1 voltage generator accompanies with an external MOS transistor to generate +V1 voltage, which is required for the row driver. Figure 10 shows the accompanying external circuit for generating +V1 voltage.

3 SSD1730 SOLOMON Rev 2.0

6. PINS ASSIGNMENT

The package of SSD1730 is 48 LQFP and Table 2 shows its pin assignment.

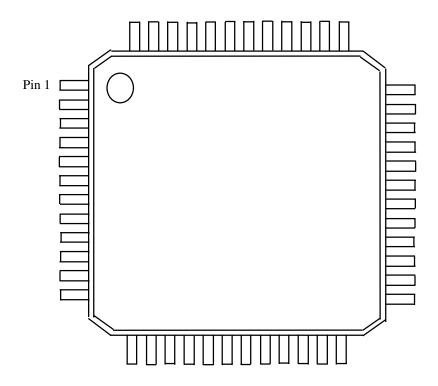


Figure 2 - Pinout Diagram

Pin#	Signal Name	Pin#	Signal Name	Pin#	Signal Name	Pin#	Signal
							Name
1	-V1	13	-V3B	25	NC2	37	L0
2	C8N	14	C1NB	26	NC 3	38	L1
3	VDD_ROW	15	VSS	27	-V3	39	L2
4	C7N	16	C1PB	28	C2P	40	L3
5	VSS	17	VDD_PWR	29	VDD_PWR	41	VSS
6	VEE	18	C4N	30	C1P	42	LP
7	C6N	19	-V2	31	VSS	43	FR
8	VEM	20	C4P	32	C3N	44	XFR
9	C5N	21	-V3	33	V2	45	XSLP
10	HC	22	VSS	34	NC4	46	XTST
11	NC1	23	C1N	35	C3P	47	AB
12	C5P	24	C2N	36	VDD_PWR	48	XBB

Table 2 - Pin Assignment Table

7. PIN DESCRIPTION

Key:

I =Input

O =Output

I/O = Bi-Directional (Input/Output)

P = Power pin

NC = Dummy pin

Pin Name	Туре	Pin#	Description
VDD_PWR	Р	17, 29 &36	Power supply pin
VSS	Р	5, 15, 22, 31 & 41	Ground pin

Table 3 - Power Supply Pins

Pin Name	Type	Pin#	Description
L0 to L3	I	37 to 40	These input pins are used to set the polarity reversal interval ranging from 2P to 17P.
FR	0	43	This is an output pin and the FR signal is generated from the LCD polarity reverse signal generator.
XFR	0	44	This is an output pin and the XFR signal is also generated from the LCD polarity reverse signal generator. This signal is a reverse phase from FR signal.

Table 4 - Pins for frame signal generator

Pin Name	Type	Pin#	Description
LP	I	42	This input pin is used to generate the charge pump clock and the polarity reverse signal FR and XFR. A pulse signal with a period of 1P should be fed into this pin.
XSLP	I	45	This input pin is used to switch on or off the display. When it is set to VSS level, the clock and the operations of the voltage converter will be stop. The display will be off. When it is set to VDD_PWR level, the display will be on.

Table 5 - Pins for clock signal generator

Pin Name	Туре	Pin#	Description
-V1	I/O	1	This is the row driver negative voltage level power supply voltage terminal. The -V1 is an input signal to the contrast adjustment circuit this is used to adjust the display contrast. Besides, this is the power supply to the +V1 voltage generator control circuit.

Table 6 - Pins for -V1 discharge circuit

Pin Name	Туре	Pin#	Description	
C1P	I/O	30	The positive-side connection terminal for a capacitor C1 to generate -V3 output voltage. (Refer to the application circuit)	
C1N	I/O	23	The negative-side connection terminal for a capacitor C1 to generate -V3 output voltage. (Refer to the application circuit)	
C2P	I/O	28	The positive-side connection terminal for a capacitor C2 to generate -V3 output voltage. (Refer to the application circuit)	
C2N	I/O	24	The negative-side connection terminal for a capacitor C2 to generate -V3 output voltage. (Refer to the application circuit)	
-V3	0	21, 27	This is -V3 output voltage, which is for the power supply of segment driver.	
C3P	I/O	35	The positive-side connection terminal for a capacitor C3 to generate V2 output voltage. (Refer to the application circuit)	
C3N	I/O	32	The negative-side connection terminal for a capacitor C3 to generate V2 output voltage. (Refer to the application circuit)	
V2	I/O	33	This is V2 output voltage which is for the power supply of segment driver.	
C4P	I/O	20	The positive-side connection terminal for a capacitor C4 to generate -V2 output voltage. (Refer to the application circuit)	
C4N	I/O	18	The negative-side connection terminal for a capacitor C4 to generate -V2 output voltage. (Refer to the application circuit)	
-V2	0	19	This is -V2 output voltage which is for the power supply of segment driver.	

Table 7 - Pins for column (segment) driver voltage generator

Pin Name	Туре	Pin#	Description
		Pins for	VDD_ROW voltage generator
C8N	I/O	2	The negative-side connection terminal for a capacitor C11 to generate VDD_ROW output voltage. (Refer to the application circuit)
VDD_ROW	0	3	This is VDD_ROW output voltage which is the power supply to the logic circuit part of row driver.
			for +V1 voltage generator
AB	0	47	This is the clock output for the external n-channel MOS transistor control in the +V1 voltage generator circuit.
XBB	0	48	This is the clock output for the external p-channel MOS transistor control in the +V1 voltage generator circuit.
C7N	I/O	4	The negative-side connection terminal for a capacitor C18 to generate +V1 output voltage. (Refer to the application circuit)
			driver voltage conversion circuit
C1PB	I/O	16	The positive-side connection terminal for a capacitor C10 and C11 to generate -V3B output voltage. (Refer to the application circuit)
C1NB	I/O	14	The negative-side connection terminal for a capacitor C10 to generate -V3B output voltage. (Refer to the application circuit)
-V3B	0	13	This is -V3B output voltage equipped as the middle voltage level for generating VEE output voltage.
HC	I	10	This pin is used to select 5X or 6X step-up mode. When it is tied to VSS, 5X step-up mode will be set. When it is tied to -V3B, 6X step-up mode will be set.
C5P	I/O	12	The positive-side connection terminal for a capacitor C8 and C9 to generate VEM output voltage. (Refer to the application circuit)
C5N	I/O	9	The negative-side connection terminal for a capacitor C8 to generate VEM output voltage. (Refer to the application circuit)
VEM	0	8	This is VEM output voltage equipped as the middle voltage level for generating VEE output voltage.
C6N	I/O	7	The negative-side connection terminal for a capacitor C9 to generate VEE output voltage. (Refer to the application circuit)
VEE	0	6	This is VEE output voltage.

Table 8 - Pins for row (common) driver voltage generator

Pin Name	Type	Pin#	Description
XTST	1	46	This is a test pin. This pin must be tied to the VDD_PWR level in normal application.
NC,1 NC2, NC3, NC4	NC	11, 25, 26, 34	Dummy Pins. These pins must be left open & unconnected in normal application.

Table 9 - Test circuit pins and Dummy pins

8. DC CHARACTERISTICS

Maximum Ratings

Symbol	Parameter	Value	Unit
VDD_PWR	Supply voltage	3.7	V
-V1	Row driver negative supply voltage	VEE-0.3 to 0.3	V
V_{in}	Input voltage	-0.3 to VDD_PWR+3.0	V
I _{DD}	Input current	10	mA
I_{V2}	Output current at V2	6	mA
I _{-V2}	Output current at -V2	6	mA
I _{-V3}	Output current at -V3	5	mA
I _{VEE}	Output current at VEE	1	mA
I _{VDD ROW}	Output current at VDD_ROW	0.1	mA
T _A	Operating Temperature	-20 to +85	°C
T _{STG}	Storage Temperature Range	-65 to +150	°C

Table 10 - Maximum Ratings for DC characteristics (Voltage Referenced to VSS, T_A=25°C)

Maximum ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits shown in the Electrical characteristics table.

This device contain circuitry to protect the inputs against damage due to high static voltages of electric fields; however, it is advised that normal precautions to be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. All dummy pins and NC pins must be left open & unconnected. Do not connect or group dummy pins or NC pins together.

SOLOMON Rev 2.0 **SSD1730**

9. Electrical Characteristics

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit	
VDD_PWR	Supply voltage range	(Absolute value referenced to VS	2.4	3.3	3.6	V	
-V1	Row driver negative supply voltage Range	(Absolute value referenced to VS	VEE+0.6		-V3	V	
Istd	Standby Mode Supply Current Drain at VDD_PWR	VDD_PWR=2.4V to 3.6V, Displative (XSLP=VIL).		2	5	μΑ	
I _{DP1}	Display Mode Supply Current Drain at VDD_PWR in 5X step-up mode	VDD_PWR=2.7V, 5X step-up, LF period=69μs, LP width=1μs, Disp (XSLP=V _{IH}), No loading		270	380	μА	
I _{DP2}	Display Mode Supply Current Drain at VDD_PWR in 6X step-up mode	VDD_PWR=2.7V, 6X step-up, LF period=69μs, LP width=1μs, Disp (XSLP=V _{IH}), No loading		350	480	μА	
\/55	Output voltage at VEE	6X step-up, LP period=69μs, LP width=1μs, Display on	VDD_PWR =2.7V		-12.25		V
VEE	pin	(XSLP=V _{IH}), Io=0.4mA (from VSS)	VDD_PWR =2.4V		-10.85		V
VDD DOW	Output voltage at	6X step-up, LP period=69μs, LP width=1μs, Display on	VDD_PWR =2.7V		-V1+2.7		V
VDD_ROW	VDD_ROW pin	(XSLP=V _{IH}), Io=0.02mA (to – V1)	VDD_PWR =2.4V		-V1+2.4		V
V2	Output voltage at V2 pin	6X step-up, LP period=69μs, LP width=1μs, Display on	VDD_PWR =2.7V		1.313		V
V2	Output voltage at v2 piii	(XSLP=V _{IH}), Io=2mA (to VSS)	VDD_PWR =2.4V		1.16		V
-V2	Output voltage at -V2 pin	6X step-up, LP period=69μs, LP width=1μs, Display on	VDD_PWR =2.7V		-1.276		V
- V Z	utput voltage at -v2 piii	(XSLP=V _{IH}), Io=2mA (from VSS)	VDD_PWR =2.4V		-1.134		V
\/2	Output valtage at 1/2 pin	6X step-up, LP period=69μs, LP width=1μs, Display on	VDD_PWR =2.7V		-2.646		V
-V3	Output voltage at -v3 pin	utput voltage at -V3 pin (XSLP=V _H), lo=1mA (from VSS)			-2.352		V
V _{IH}	Input High voltage at pins: LP, XSLP, L0, L1, L2, L3 and XTST	VDD_PWR = 2.4V - 3.6V		0.8*VDD_PWR		VDD_PWR	V
V _{IL}	Input Low voltage at pins : LP, XSLP, L0, L1, L2, L3 and XTST		0		0.2*VDD_PWR	V	
V _{OH}	Output High Voltage at pins : XBB, AB, FR and XFR	VDD_PWR = 2.4V - 3.6V, lout=-2	VDD_PWR-0.1		VDD_PWR	.,,	
V _{OL}	Output Low Voltage at pins : XBB, AB, FR and XFR	VDD_PWR = 2.4V - 3.6V, lout=-20μA		0		0.1	V

Table 11 - Electrical characteristics (Voltage Referenced to VSS, TA=25°C)

10. AC CHARACTERISTICS

Input Timing Characteristics

Symbol	Parameter	Min	Тур	Max	Unit
t _{LPC}	LP Period	50	70	125	μs
t_{LPW}	LP Width	70	1000	*2000	ns
t _{LPr}	LP Rise Time			10	ns
t _{LPf}	LP Fall Time			10	ns

Table 12 - Input Timing Characteristics (Voltage Referenced to VSS, VDD_PWR = 2.4 to 3.6V, $T_A = 25$ °C)

Remark *: It is noted that the wider the positive LP pulse with, the higher the output impedance of the output voltage. The chip can function with positive LP pulse width in excess of 2000ns, but high output impedance will be found.

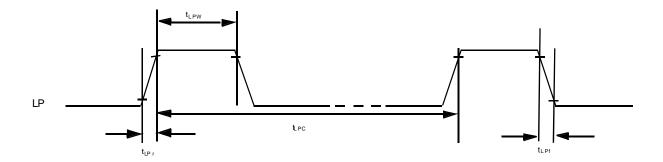


Figure 3 - Timing Characteristics for input pin LP

Output Timing Characteristics

LP pulse width = 1000ns, -V1 = VEE + 0.6V, 6X step-up mode application

Symbol	Parameter	Min	Тур	Max	Unit
t _{FRr}	FR/XFR Signal Rise Delay Time (with loading = 50pF)			3300	ns
t _{FRf}	FR/XFR Signal Fall Delay Time (with loading = 50pF)	330		3300	ns
t _{ABr}	AB Signal Rise Delay Time			2000	ns
t _{Abf}	AB Signal Fall Delay Time			1900	ns
t _{XBBr}	XBB Signal Rise Delay Time	130		1100	ns
t _{XBBf}	XBB Signal Fall Delay Time	280		3200	ns
t _{OFFr}	Rising Edge Output Phase Differential Time	1000		2400	ns
t _{OFFf}	Falling Edge Output Phase Differential Time	1000		2200	ns
t _{C7Nr}	C7N Signal Rising Edge Delay Time	270		2400	ns
t _{C7Nf}	C7N Signal Falling Edge Delay Time	490		3800	ns

Table 13 - Output Timing Characteristics

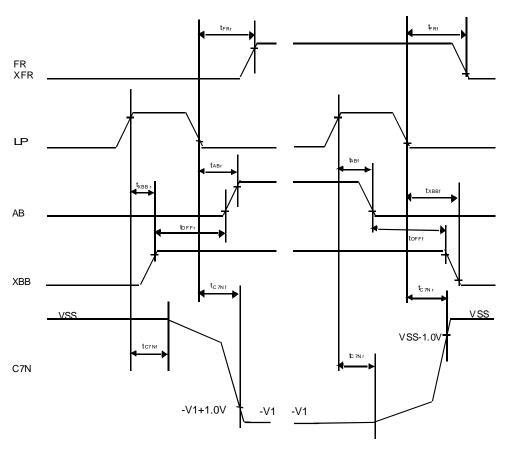


Figure 4 - Output Timing Characteristics

11. EXPLANATION OF FUNCTIONS

This SSD1730 is a power chip for operating four-line MLA LCD drivers. It consists of a CMOS charge pump-type voltage generator which can produce all of the bias voltages for a four-line MLA driven. SSD1730 power chip can be used as a voltage generator to a display system formed by column driver such as SSD1870 and row driver such as SSD1881. In SSD1730, all output voltages are generated or reference from supply power VDD_PWR. The voltage levels at 5X or 6X step-up mode can be calculated by the logical formulas that are summarized in Table 14.

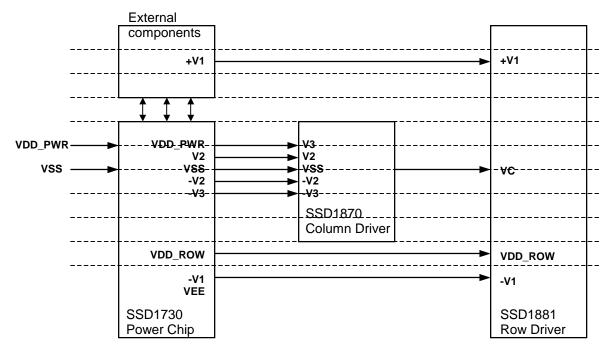


Figure 5 - Voltage levels relationship between power chip, column driver and row driver

5X Step-up	Mode	6X Step-up Mode			
Logical Formula	Voltage Level (VDD_PWR=3.3V)	Logical Formula	Voltage Level (VDD_PWR=3.3V)		
+V1=-(-V1) =4 x (VDD_PWR-VSS) - γ	13.2 - γ	+V1=-(-V1) =5 x (VDD_PWR-VSS) - γ	16.5 - γ		
V3=VDD_PWR-VSS	3.3	V3=VDD_PWR-VSS	3.3		
V2=0.5 x (VDD_PWR-VSS)	1.65	V2=0.5 x (VDD_PWR-VSS)	1.65		
VC=VSS	0.0	VC=VSS	0.0		
-V2=-0.5 x (VDD_PWR-VSS)	-1.65	-V2=-0.5 x (VDD_PWR-VSS)	-1.65		
-V3=-V3B=-(VDD_PWR-VSS)	-3.3	-V3=-V3B=-(VDD_PWR-VSS)	-3.3		
VEM=-2 x (VDD_PWR-VSS)	-6.6	VEM=-3 x (VDD_PWR-VSS)	-9.9		
VDD_ROW=-3 x (VDD_PWR- VSS) + γ	-9.9 + γ	VDD_ROW=-4 x (VDD_PWR- VSS) + γ	-13.2 + γ		
-V1=-4 x (VDD_PWR-VSS) + γ	-13.2 + γ	-V1=-5 x (VDD_PWR-VSS) + γ	-16.5 + γ		
VEE=-4 x (VDD_PWR-VSS)	-13.2	VEE=-5 x (VDD_PWR-VSS)	-16.5		

Table 14 - Logical formula for SSD1730 (VSS = 0.0V)

Where γ is a variable and it must greater than or equal to 0 ($\gamma \ge 0$). In practice, it represents contrast adjustment value.

LCD Polarity Reverse Signal Generator

This circuit generates the polarity reverse signals FR and XFR from the 1P period pulse signal LP. The polarity reversal period ranging from 2P to 17P is controlled by four pins L0, L1, L2 & L3. In such case, the upper and lower screens can be driven in mutually opposite phases when a two-screen drive panel is used, the polarity of the FR signal and the XFR signal are mutually opposite. The timing of the output transitions is synchronized with the falling edge of the LP signal. Figure 6 shows the timing diagram of LP, FR and XFR signals. Table 15 shows the relationship between the number of LP (NumLP) during the frame interval and the settings of L0 to L3.

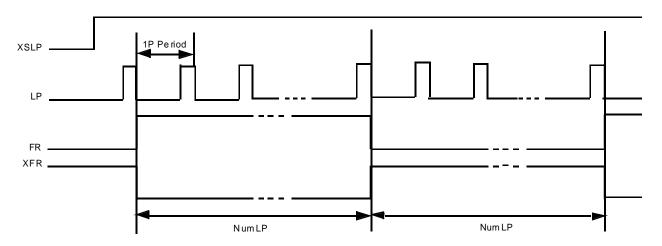


Figure 6 - Timing Characteristics of LP, FR and XFR

L0	L1	L2	L3	Time	Number Of LP (NumLP)	
0	0	0	0	17P	LP Signal	17 th pulse
1	0	0	0	2P	LP Signal	2 nd pulse
0	1	0	0	3P	LP Signal	3 rd pulse
1	1	0	0	4P	LP Signal	4 th pulse
0	0	1	0	5P	LP Signal	5 th pulse
1	0	1	0	6P	LP Signal	6 th pulse
0	1	1	0	7P	LP Signal	7 th pulse
1	1	1	0	8P	LP Signal	8 th pulse
0	0	0	1	9P	LP Signal	9 th pulse
1	0	0	1	10P	LP Signal	10 th pulse
0	1	0	1	11P	LP Signal	11 th pulse
1	1	0	1	12P	LP Signal	12 th pulse
0	0	1	1	13P	LP Signal	13 th pulse
1	0	1	1	14P	LP Signal	14 th pulse
0	1	1	1	15P	LP Signal	15 th pulse
1	1	1	1	16P	LP Signal	16 th pulse

Table 15 - Relationship between NLP an L0 to L3

Clock Signal Generator

This circuit generates the clock for charge pump circuit from the pulse signal LP. When the display off control signal XSLP is set to VSS, the clock will stop and the voltage converter will halt. The signal clocks AB and XBB for the column driver voltage generator and the row driver voltage generator are also generated by this circuit.

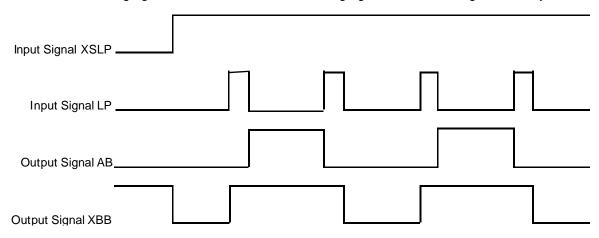


Figure 7 - Timing diagram for LP, AB and XBB

Driver Voltage Generator

This circuit generates all voltage levels which are required to drive both the row driver and the column driver. The voltage converter circuit comprises a CMOS charge pump-type DC/DC converter which is formed by five individual voltage generator circuits including 1) Column driver voltage generator, 2) Row driver voltage conversion circuit, 3) VDD_ROW voltage generator circuit, 4) +V1 voltage generator circuit and 5) External contrast control circuit. Figure 8 shows the relationship between these voltage generator circuits and Table 14 summarized all logical formulas which can be used to calculated these voltage levels. Besides, in order to generate these voltages, external capacitors for the charge pump are necessary. Application circuit shows their connections

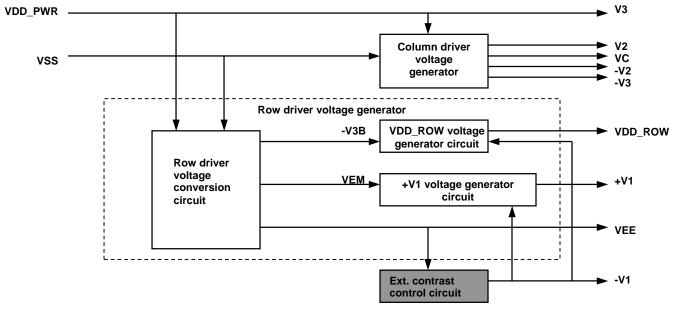


Figure 8 - Voltage generator control circuit

SOLOMON Rev 2.0 **SSD1730**

04/2002

Contrast Control Circuit

The display contrast level –V1 is controlled by an external contrast adjustment circuit. Figure 9 shows the typical connection of contrast control circuit.

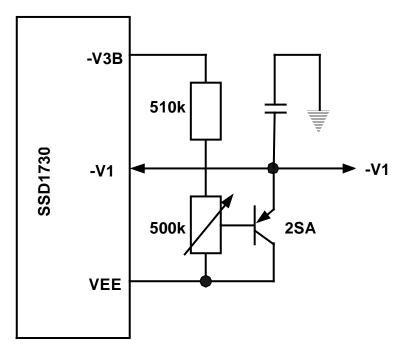


Figure 9 - Typical connection of contrast control circuit

+V1 Voltage Generator

This circuit generates voltage level +V1 which is the positive power supply to row driver. Signal AB and XBB are the clock for this generator circuit. Figure 10 shows the typical connection of the +V1 voltage generator.

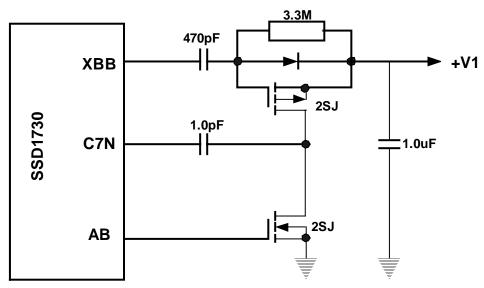


Figure 10 - Typical connection of +V1 voltage generator

-V1 and +V1 Discharge Circuit

When XSLP is set to VSS level, the internal –V1 discharge circuit will be triggered and the residual charge at the row driver negative voltage-side power supply voltage terminal –V1 will be discharged to the VSS level. However, the residual charge at the row driver positive voltage-side power supply terminal +V1 can be discharged to the VSS level through an external MOS transistor. Figure 11 shows the typical connection of the +V1 discharge circuit.

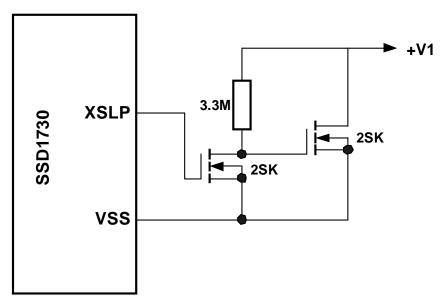


Figure 11 - Typical connection of +V1 discharge circuit

Power Up and Power Down Sequence

Proper power up sequence and power down sequence are recommended to protect the display system and to have better performance.

Power Up Sequence:

Start – Turn on the logic system in the application and power up the SSD1730

Display off - Set Column and Row Driver DOFF# to "L"

Initialization - Send LP, YD, XSCL and Data

Stable – Wait for the power levels getting stable (around 80ms)#

Display on - Set Column and Row Driver DOFF# to "H"

Power Down Sequence:

Display off - Set Column and Row Driver DOFF# to "L"

Sleep mode – Set power chip to sleep mode by setting XSLP to "L"

Discharge – Wait for the discharge of the display system (around 50ms)[#]

Power down – Cut the power of the SSD1730

End – Turn off the logic system of the application

SOLOMON Rev 2.0 **SSD1730**

04/2002

[#] Depends on the system loading.

12. APPLICATION CIRCUIT (SSD1730 5X Step-Up Mode)

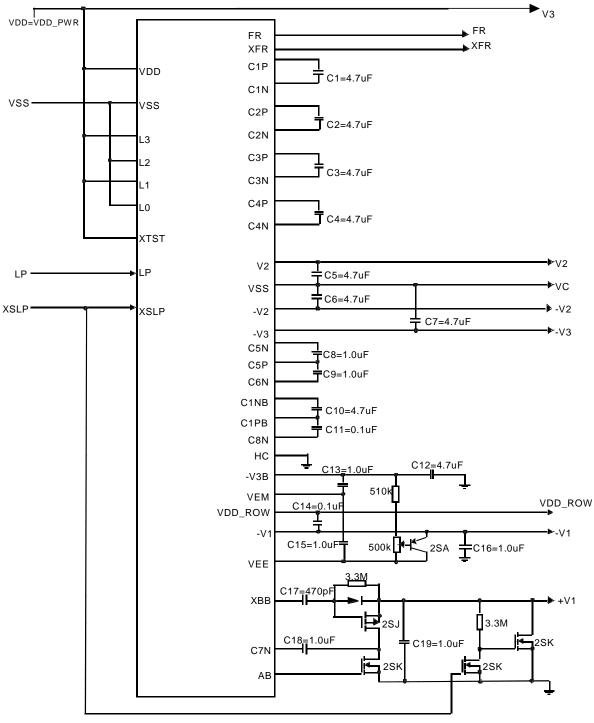


Figure 12 - Application Circuit for SSD1730 5X step-up mode

Remark: HC is tied to -V3B for 6X Step-up Mode.

13. PACKAGE DIMENSIONS

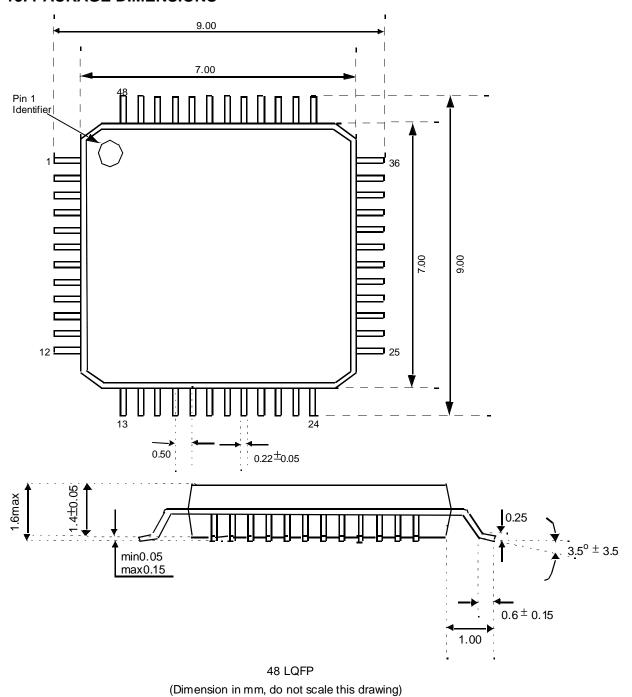


Figure 13 - Package Dimensions

Solomon Systech reserves the right to make changes without further notice to any products herein. Solomon Systech makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Solomon Systech assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Solomon Systech does not convey any license under its patent rights nor the rights of others. Solomon Systech products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Solomon Systech product could create a situation where personal injury or death may occur. Should Buyer purchase or use Solomon Systech products for any such unintended or unauthorized application, Buyer shall indemnify and hold Solomon Systech and its offices, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Solomon Systech was negligent regarding the design or manufacture of the part.

SOLOMON