CMOS 8-bit Single Chip Microcomputer

Description

The CXP84220/84224 is a CMOS 8-bit single chip microcomputer integrating on a single chip an A/D converter, serial interface, timer/counter, time base timer, capture timer counter, remote control reception circuit besides the basic configurations of 8-bit CPU, ROM, RAM, and I/O port.
The CXP84220/84224 also provides a power-on reset function and a sleep/stop function that enables
 lower power consumption.

Features

- Wide-range instruction system (213 instructions) to cover various types of data
-16-bit arithmetic/multiplication and division/Boolean bit operation instructions
- Minimum instruction cycle 400 ns at 10 MHz operation
- Incorporated ROM capacity 20K bytes (CXP84220) 24K bytes (CXP84224)
- Incorporated RAM capacity 624 bytes
- Peripheral functions
-A/D converter
—Serial interface
-Timer
—Remote control reception circuit
—PWM output circuit
- Interruption
- Standby mode
- Package
- Piggyback/evaluation chip

8-bit, 8-channel, successive approximation method (Conversion time of $32 \mu \mathrm{~s} / 10 \mathrm{MHz}$) SIO with 8-bit, 8-stage FIFO incorporated for data use (Auto transfer for 1 to 8 bytes), 1 channel 8 -bit standard SIO, 1 channel 8 -bit timer, 8 -bit timer/counter, 19-bit time base timer, 16-bit capture timer/counter Incorporated noise elimination circuit Incorporated 8-bit, 6-stage FIFO for measurement data 14 bits, 1 channel
13 factors, 14 vectors, multi-interruption possible
Sleep/stop
64-pin plastic SDIP
CXP84200 64-pin ceramic SDIP

Structure

Silicon gate CMOS IC
Block Diagram

Pin Assignment (Top View)

Note) NC (Pin 1) is always connected to VDD.

Pin Description

Pin code	I/O		Description
$\begin{gathered} \text { PAO/ANO } \\ \text { to } \\ \text { PA7/AN7 } \end{gathered}$	I/O/Analog input	(Port A) 8-bit //O port. I/O can be set in a unit of single bit. Incorporation of the pullup resistance can be set through the software in a unit of 4 bits. (8 pins)	Analog inputs to A/D converter. (8 pins)
PBO/CINT	I/O/Input	(Port B) 7-bit I/O port in which I/O can be set in a unit of single bit. Also, an uppermost bit (PB7) exclusively for output. Incorporation of pull-up resistor can be set through the software in a unit of 4 bits. (8 pins)	External capture input to 16-bit timer/counter.
PB1/CS0	I/O/Input		Chip select input for serial interface (CH0).
PB2/SCK0	1/0///O		Serial clock I/O (CHO).
PB3/SIO	I/O/Input		Serial data input (CHO).
PB4/SO0	I/O/Output		Serial data output (CHO).
PB5/SCK1	1/O///O		Serial clock I/O (CH1).
PB6/S11	I/O/Input		Serial data input (CH1).
PB7/SO1	Output/Output		Serial data output (CH1).
PC0 to PC7	I/O	(Port C) 8-bit I/O port. I/O can be set in a unit of single bit. Capable of driving 12 mA sink current. Incorporation of pull-up resistor can be set through the software in a unit of 4 bits. (8 pins)	
PD0 to PD7	I/O	(Port D) 8-bit I/O port. I/O can be set in a unit of single bits. Incorporation of pullup resistor can be set through the software in a unit of 4 bits. (8 pins)	
PE0/EC0	Input/Input	(Port E) 6-bit port. Lower 4 bits are for inputs; upper 2 bits are for outputs. (6 pins)	External event inputs for timer/counter. (2 pins)
PE1/EC1	Input/Input		
PE2/RMC	Input/Input		Remote control reception circuit input.
PE3/NMI	Input/Input		Non-maskable interruption request input.
PE4/PWM	Output/Output		14-bit PWM output.
PE5/TO	Output/Output		Rectangular wave output for 16-bit timer/counter.
PF0 to PF7	I/O	(Port F) 8 -bit output port. I/O can be set in a unit of single bit. Incorporation of pull-up resistor can be set through the software in a unit of 4 bits. (8 pins)	
PG0 to PG2	I/O	(Port G) 8-bit I/O port. I/O can be set in a unit of single bit. Incorporation of pull-up resistor can be set through the software in a unit of 4 bits. (3 pins)	

Pin code	I/O	Description	
PIO/INTO to PI3/INT3	I/O/Input	(Port I) 7-bit output ports. I/O can be set in a unit of single bit. Incorporation of pull-up resistor can be set through the software in a unit of 4 bits. (7 pins)	
PI4 to PI6	I/O	External interruption request inputs.	
EXTAL	Input	Crystal connectors for system clock oscillation. When the clock is supplied externally, input to EXTAL; opposite phase clock should be input to XTAL.	
XTAL	Output	Low-level active, system reset.	
RST	I/O	NC. Under normal operating conditions, connect to VDD.	
NC		Reference voltage input for A/D converter.	
AVREF	Input	A/D converter GND.	
AVss		Positive power supply.	
VDD		GND	
Vss			

Input/Output Circuit Formats for Pins

Pin	Circuit format	When reset
PAO/ANO to PA7/AN7 8 pins	Port A	Hi-Z
PBO/CINT PB1/CS0 PB3/SIO PB6/SI1 4 pins	Port B	Hi-Z
PB2/ $\overline{\text { SCK }}$ PB5/SCK1 2 pins	Port B	Hi-Z

\begin{tabular}{|c|c|c|}
\hline Pin \& Circuit format \& When reset

\hline PB4/SO0

1 pin \& Port B \& Hi-Z

\hline | PB7/SO1 |
| :--- |
| 1 pin | \& Port B \& High level

\hline PC0 to PC7

8 pins \& Port C \& Hi-Z

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Pin \& \multicolumn{2}{|r|}{Circuit format} \& When reset \\
\hline \begin{tabular}{l}
PE0/ECO \\
PE1/EC1 \\
PE2/RMC \\
PE3/NMI \\
4 pins
\end{tabular} \& \multicolumn{2}{|r|}{} \& Hi-Z \\
\hline PE4/PWM

1 pin \& \multicolumn{2}{|r|}{} \& High level

\hline PE5/TO

1 pin \& \multicolumn{2}{|l|}{} \& High level

\hline | PD0 to PD7 |
| :--- |
| PF0 to PF7 |
| PG0 to PG2 |
| PI4 to PI6 |
| 22 pins | \& | Port D |
| :--- |
| Port F |
| Port G |
| Port I | \& \& Hi-Z

\hline
\end{tabular}

Pin	Circuit format	When reset
PIO to PI3 4 pins		Hi-Z
EXTAL XTAL 2 pins		Oscillation
$\overline{\mathrm{RST}}$ 1 pin		Low level

Absolute Maximum Ratings
(Vss = OV reference)

Item	Symbol	Rating	Unit	Remarks
Supply voltage	Vdd	-0.3 to +7.0	V	
	AVss	-0.3 to +0.3	V	
Input voltage	VIN	-0.3 to $+7.0 * 1$	V	
Output voltage	Vout	-0.3 to $+7.0{ }^{* 1}$	V	
High level output current	Іон	-5	mA	Output per pin
High level total output current	$\Sigma \mathrm{loh}$	-50	mA	Total for all output pins
Low level output current	lol	15	mA	Value per pin, excluding large current outputs
	lolc	20	mA	Value per pin*2 for large current outputs
Low level total output current	Elol	100	mA	Total for all output pins
Operating temperature	Topr	-20 to +75	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	
Allowable power dissipation	Pd	1000	mW	

*1 Vin and Vout must not exceed Vdd +0.3 V .
*2 The large current drive transistor is the N -ch transistor of Port C (PC).
Note) Usage exceeding absolute maximum ratings may permanently impair the LSI. Normal operation should be conducted under the recommended operating conditions. Exceeding these conditions may adversely affect the reliability of the LSI.

Recommended Operating Conditions
(Vss $=0 \mathrm{~V}$ reference)

Item	Symbol	Min.	Max.	Unit	Remarks
Supply voltage	Vdd	4.5	5.5	V	High-speed mode guaranteed operation range*1
		3.5	5.5		Low-speed mode guaranteed operation range*1
		2.5	5.5		Guaranteed data hold range during stop
High level input voltage	VIH	0.7 Vdd	VdD	V	*2
	Vins	0.8 Vdd	Vdd	V	Hysteresis input*3
	Vihex	Vdd - 0.4	Vdd +0.3	V	EXTAL*4
Low level input voltage	VIL	0	0.3 VdD	V	*2
	VILS	0	0.2Vdd	V	Hysteresis input*3
	Vilex	-0.3	0.4	V	EXTAL*4
Operating temperature	Topr	-20	+75	${ }^{\circ} \mathrm{C}$	

*1 High-speed mode is $1 / 2$ frequency demultiplication clock selection; low-speed mode is $1 / 16$ frequency demultiplication clock selection.
*2 Value for each pin of normal input ports (PA, PB3, PB4, PB6, PC, PD, PF, PG, PI4 to PI6).
*3 Value of the following pins: $\overline{\mathrm{RST}}, \mathrm{CINT}, \overline{\mathrm{CS} 0}, \overline{\mathrm{SCK}}, \overline{\mathrm{SCK} 1}, \overline{\mathrm{ECO}}, \overline{\mathrm{EC} 1}, \mathrm{RMC}, \overline{\mathrm{NMI}}, \operatorname{INT0}, \operatorname{INT} 1$, INT2, INT3.
*4 Specifies only during external clock input.

Electrical Characteristics

DC Characteristics
($\mathrm{Ta}=-20$ to $+75^{\circ} \mathrm{C}, \mathrm{Vss}=0 \mathrm{~V}$ reference)

Item	Symbol	Pins	Conditions	Min.	Typ.	Max.	Unit
High level output voltage	Vон	PA to PD, PE4, PE5, PF, PG, PI	$\mathrm{VDD}=4.5 \mathrm{~V}, \mathrm{IOH}=-0.5 \mathrm{~mA}$	4.0			V
			$\mathrm{VDD}=4.5 \mathrm{~V}$, $\mathrm{IoH}=-1.2 \mathrm{~mA}$	3.5			V
Low level output voltage	Vol		$\mathrm{VDD}=4.5 \mathrm{~V}, \mathrm{loL}=1.8 \mathrm{~mA}$			0.4	V
			V DD $=4.5 \mathrm{~V}$, loL $=3.6 \mathrm{~mA}$			0.6	V
		PC	$\mathrm{VDD}=4.5 \mathrm{~V}$, $\mathrm{IoL}=12.0 \mathrm{~mA}$			1.5	V
Input current	IIHe	EXTAL	$\mathrm{VDD}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=5.5 \mathrm{~V}$	0.5		40	$\mu \mathrm{A}$
	lıLE		V DD $=5.5 \mathrm{~V}, \mathrm{~V} \mathrm{IL}=0.4 \mathrm{~V}$	-0.5		-40	$\mu \mathrm{A}$
	ILLR	RST*1	$\begin{aligned} & \mathrm{VDD}=5.5 \mathrm{~V} \\ & \mathrm{VIL}=0.4 \mathrm{~V} \end{aligned}$	-1.5		-400	$\mu \mathrm{A}$
	IIL	PA to PD*2, PF, PG, $\mathrm{PI}^{* 2}$				-2.0	mA
			$\mathrm{VDD}=4.5 \mathrm{~V}, \mathrm{~V}$ IL $=4.0 \mathrm{~V}$	-10			$\mu \mathrm{A}$
I/O leakage current	IIz	$\frac{\mathrm{PEO}}{\mathrm{RST}} \mathrm{to}^{* 1} \mathrm{PE} 3,$	$\begin{aligned} & V_{D D}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=0,5.5 \mathrm{~V} \end{aligned}$			± 10	$\mu \mathrm{A}$
Supply current*3	IdD1	Vdo	High-speed mode operation (1/2 frequency demultiplier clock) $\begin{aligned} & \text { VDD }=5.5 \mathrm{~V}, 10 \mathrm{MHz} \text { crystal oscillation } \\ & \left(\mathrm{C}_{1}=\mathrm{C}_{2}=15 \mathrm{pF}\right) \end{aligned}$		18	40	mA
	IDDS1		Sleep mode $\begin{aligned} & \text { VDD }=5.5 \mathrm{~V}, 10 \mathrm{MHz} \text { crystal oscillation } \\ & \left(\mathrm{C}_{1}=\mathrm{C}_{2}=15 \mathrm{pF}\right) \end{aligned}$		1.1	8	mA
	Idds3		Stop mode VDD $=5.5 \mathrm{~V}$, termination of 10 MHz crystal oscillation			10	$\mu \mathrm{A}$
Input capacity	Cin	Pins other than PB7, PE4, PE5, AVref, AVss, Vdd, Vss	Clock 1MHz OV for all pins excluding measured pins		10	20	pF

*1 $\overline{\mathrm{RST}}$ specifies the input current when pull-up resistance has been selected; leakage current wnen no resistance has been selected.
*2 Pins PA to PD, and PF, PG, PI specify the input current when pull-up resistance has been selected; leakage current when no resistance has been selected. (Excludes output PB7)
*3 When all pins are open.

AC Characteristics
(1) Clook timing
$\left(\mathrm{Ta}=-20\right.$ to $+75^{\circ} \mathrm{C}, \mathrm{VDD}=4.5$ to 5.5 V , $\mathrm{Vss}=0 \mathrm{~V}$ reference $)$

Item	Symbol	Pins	Conditions	Min.	Typ.	Max.	Unit
System clock frequency	fc	XTAL EXTAL	Fig. 1, Fig. 2	1		10	MHz
System clock input pulse width	txL txH	EXTAL	Fig. 1, Fig. 2 External clock drive	37.5			ns
System clock input rise time, fall time	tcR tcF	EXTAL	Fig. 1, Fig. 2 External clock drive			200	ns
Event count input clock pulse width	teH tEL	EC0 EC1	Fig. 3	tsys +50*1			ns
Event count input clock rise time, fall time	ter tEF	$\overline{\text { EC0 }}$ EC1	Fig. 3			20	ms

*1 tsys indicates the three values below according to the upper two bits (CPU clock selection) of the clock control register (address: 00FEH).
tsys [ns] = 2000/fc (upper two bits = "00"), 4000/fc (upper two bits = "01"), 16000/fc (upper two bits = " 11 ")

Fig. 1. Clock timing

Fig. 2. Clock applied condition

Fig. 3. Event count clock timing
(2) Serial transfer (CHO)
($\mathrm{Ta}=-20$ to $+75^{\circ} \mathrm{C}, \mathrm{VdD}=4.5$ to $5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$ reference)

Item	Symbol	Pin	Condition	Min.	Max.	Unit
$\overline{\mathrm{CSO}} \downarrow \rightarrow \overline{\mathrm{SCKO}}$ delay time	tocsk	$\overline{\text { SCKO }}$	Chip select transfer mode ($\overline{\text { SCKO }}=$ output mode)		tsys + 200	ns
$\overline{\mathrm{CSO}} \uparrow \rightarrow \overline{\mathrm{SCKO}}$ float delay time	tocskf	$\overline{\text { SCKO }}$	Chip select transfer mode ($\overline{\mathrm{SCKO}}=$ output mode)		tsys + 200	ns
$\overline{\mathrm{CSO}} \downarrow \rightarrow \mathrm{SOO}$ delay time	tocso	SOO	Chip select transfer mode		tsys +200	ns
$\overline{\mathrm{CSO}} \uparrow \rightarrow \mathrm{SOO}$ float delay time	tocsof	SOO	Chip select transfer mode		tsys + 200	ns
$\overline{\mathrm{CSO}}$ High level width	twhcs	$\overline{\text { CSO }}$	Chip select transfer mode	tsys + 200		ns
$\overline{\text { SCKO }}$ cycle time	tkcy	$\overline{\text { SCKO }}$	Input mode	2tsys +200		ns
			Output mode	16000/fc		ns
$\overline{\text { SCKO }}$ High, Low level width	$\begin{aligned} & \mathrm{t} \mathrm{KH} \\ & \mathrm{t}_{\mathrm{KL}} \end{aligned}$	$\overline{\text { SCK0 }}$	Input mode	tsys + 100		ns
			Output mode	8000/fc - 50		ns
SIO input setup time (for SCKO \uparrow)	tsik	SIO	$\overline{\text { SCK0 }}$ input mode	100		ns
			$\overline{\text { SCKO }}$ output mode	200		ns
SIO input hold time (for SCKO \uparrow)	tksı	SIO	SCK0 input mode	tsys + 200		ns
			$\overline{\text { SCKO }}$ output mode	100		ns
$\begin{aligned} & \overline{\text { SCKO }} \downarrow \rightarrow \text { SOO } \\ & \text { delay time } \end{aligned}$	tkso	SOO	SCK0 input mode		tsys + 200	ns
			$\overline{\text { SCK0 }}$ output mode		100	ns

Note 1) tsys indicates the three values below according to the upper two bits (CPU clock selection) of the clock control register (address: 00FEн).
tsys [ns] = 2000/fc (upper two bits = "00"), 4000/fc (upper two bits = "01"), 16000/fc (upper two bits = "11")
Note 2) The load condition for the $\overline{\text { SCKO }}$ output mode, SOO output delay time is $50 \mathrm{pF}+1 \mathrm{TTL}$.

Fig. 4. Serial transfer CHO timing

Serial transfer (CH1)
($\mathrm{Ta}=-20$ to $+75^{\circ} \mathrm{C}, \mathrm{VdD}=4.5$ to $5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$ reference)

Item	Symbol	Pin	Condition	Min.	Max.	Unit
SCK1 cycle time	tkcy	SCK1	Input mode	1000		ns
			Output mode	16000/fc		ns
SCK1 High, Low level width	$\begin{aligned} & \text { tKH } \\ & \mathrm{t}_{\mathrm{KLL}} \end{aligned}$	SCK1	Input mode	400		ns
			Output mode	8000/fc - 50		ns
SI1 input setup time (for SCK1 \uparrow)	tsik	SI1	$\overline{\text { SCK1 }}$ input mode	100		ns
			$\overline{\text { SCK1 }}$ output mode	200		ns
Sl1 input hold time (for SCK1 \uparrow)	tksı	SI1	SCK1 input mode	200		ns
			$\overline{\text { SCK1 }}$ output mode	100		ns
$\overline{\text { SCK1 }} \downarrow \rightarrow$ SO1 delay time	tkso	SO1	SCK1 input mode		200	ns
			$\overline{\text { SCK1 }}$ output mode		100	ns

Note) The load condition for the $\overline{\text { SCK1 }}$ output mode, SO1 output delay time is $50 \mathrm{pF}+1$ TTL.

Fig. 5. Serial transfer CH 1 timing
(3) A/D converter characteristics
($\mathrm{Ta}=-20$ to $+75^{\circ} \mathrm{C}, \mathrm{VdD}=4.5$ to $5.5 \mathrm{~V}, \mathrm{AV}$ REF $=4.0$ to $\mathrm{AVDD}, \mathrm{Vss}=\mathrm{AVss}=0 \mathrm{~V}$ reference $)$

Item	Symbol	Pin	Condition	Min.	Typ.	Max.	Unit
Resolution						8	Bits
Linearity error			$\begin{aligned} & \mathrm{Ta}=25^{\circ} \mathrm{C} \\ & \mathrm{VDD}=5.0 \mathrm{~V} \\ & \mathrm{VSS}=\mathrm{AVSS}=0 \mathrm{~V} \end{aligned}$			± 3	LSB
Zero transition voltage	VZT* ${ }^{*}$			-10	70	150	mV
Full-scale transition voltage	$\mathrm{VFT}^{* 2}$			4930	5050	5120	mV
Conversion time	tconv			160/fadc*3			$\mu \mathrm{s}$
Sampling time	tsamp			12/fadc*3			$\mu \mathrm{s}$
Reference input voltage	Vref	AVref		Vdd - 0.5		Vdd	V
Analog input voltage	VIAN	AN0 to AN7		0		AVref	V
AVref current	IreF	AVref	Operation mode		0.6	1.0	mA
	Irefs		Sleep mode Stop mode			10	$\mu \mathrm{A}$

Fig. 6. Definition of A / D converter terms
(4) Interruption, reset input
$\left(\mathrm{Ta}=-20\right.$ to $+75^{\circ} \mathrm{C}, \mathrm{VdD}=4.5$ to 5.5 V , $\mathrm{Vss}=0 \mathrm{~V}$ reference $)$

Item	Symbol	Pin	Condition	Min.	Max.	Unit
External interruption High, Low level width	tiH tiL	INT0 INT1 INT2				
INT3						
INT3		1		$\mu \mathrm{~s}$		
Reset input Low level width	tRSL	$\overline{\text { RST }}$				

Fig. 7. Interruption input timing

Fig. 8. $\overline{\text { RST }}$ input timing

(5) Power-on reset

Power-on reset* ($\mathrm{Ta}=-20$ to $+75^{\circ} \mathrm{C}, \mathrm{VdD}=4.5$ to $5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$ reference)

Item	Symbol	Pin	Condition	Min.	Max.	Unit
Power supply rising time	t_{R}	VDD	Power-on reset	0.05	50	ms
	Power supply cut-off time			Repetitive power-on reset	1	
ynnnnnn		ms				

* Specifies only when power-on reset function is selected.

VDD

The power supply should be rise smoothly.
Fig. 9. Power-on reset

Appendix

(i) Main clock

(ii) Main clock

Fig. 10. SPC700 Series recommended oscillation circuit

Manufacturer	Model	fc (MHz)	$\mathrm{C}_{1}(\mathrm{pF})$	$\mathrm{C}_{2}(\mathrm{pF})$	Rd (Ω)	Circuit example
MURATA MFG CO., LTD.	CSA4.19MG	4.19	30	30	0	(i)
	CSA8.00MTZ	8.00				
	CSA10.0MTZ	10.00				
	CST4.19MGW*	4.19				(ii)
	CST8.00MTW*	8.00				
	CST10.0MTW*	10.00				
RIVER ELETEC CORPORATIO N	HC-49/U03	4.19	12	12	0	(i)
		8.00				
		10.00				
KINSEKI LTD.	HC-49/U (-S)	4.19	27	27	0	
		8.00				
		10.00	20	20		

Those marked with an asterisk (${ }^{*}$) signify types with built-in ground capacitance ($\mathrm{C}_{1}, \mathrm{C}_{2}$).

Mask option table

Item	Content	
Reset pin pull-up resistance	Non-existent	Existent
Power-on reset circuit	Non-existent	Existent

64PIN SDIP (PLASTIC)

PACKAGE STRUCTURE

SONY CODE	SDIP-64P-01
EIAJ CODE	SDIP064-P-0750
JEDEC CODE	

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER PLATING
LEAD MATERIAL	42 ALLOY
PACKAGE MASS	8.6 g

