CMOS 8-bit Single Chip Microcomputer

Description

The CXP84412/84416 is a CMOS 8-bit single chip microcomputer integrating on a single chip an A/D converter, serial interface, timer/counter, time base timer, 32 kHz timer/counter, remote control reception circuit and other servo systems besides the basic configurations of 8 -bit CPU, ROM, RAM, and I/O port.
The CXP84412/84416 also provides and a sleep/
 stop function that enables lower power consumption.

Features

- Wide-range instruction system (213 instructions) to cover various types of data.
- 16-bit arithmetic/multiplication and division/Boolean bit operation instructions
- Minimum instruction cycle
- Incorporated ROM capacity
- Incorporated RAM capacity
- Peripheral functions
- A/D converter
- Serial interface
— Timer
— Remote control reception circuit
- PWM output for tuner
- Interruption
- Standby mode
- Package
- Piggyback/evaluation chip

400 ns at 10 MHz operation
$122 \mu \mathrm{~s}$ at 32 kHz operation
12Kbytes (CXP84412)
16Kbytes (CXP84416)
448bytes

8-bit, 8-channel, successive approximation method (Conversion time of $32 \mu \mathrm{~s} / 10 \mathrm{MHz}$)
Incorporated 8-bit, 8-stage FIFO
(Auto transfer for 1 to 8 bytes), 2 channel
8 -bit timer, 8 -bit timer/counter, 19-bit time base timer, 32 kHz timer/counter
Incorporated 6-stage FIFO 8-bit measurement counter 14 bits
12 factors, 12 vectors, multi-interruption possible
SLEEP/STOP
80-pin plastic QFP
CXP84400 80-pin ceramic QFP

Structure

Silicon gate CMOS IC

[^0]Block Diagram

Pin Assignment (Top View)

Note) NC (Pin 73) must be connected to VDD.

Pin Description

Pin code	I/O		Functions
$\begin{gathered} \text { PAO/AN0 } \\ \text { to } \\ \text { PA7/AN7 } \end{gathered}$	I/O/analog input	(Port A) 8-bit I/O port. I/O can be set in single bit units. Incorporation of the pull-up resistance can be set through the software in a unit of 4 bits. (8 pins)	Analog inputs to A/D converter. (8 pins)
PB0/CS1	I/O/input	(Port B) 8-bit I/O port. I/O can be set in single bit units. Incorporation of pull-up resistor can be set through the software in a unit of 4 bits. (8 pins)	Chip select input for serial interface (CH1).
PB1/CS0	I/O/input		Chip select input for serial interface (CHO).
PB2/SCK0	1/0///O		Serial clock I/O (CHO).
PB3/SIO	I/O/input		Serial data input (CH0).
PB4/SO0	I/O/output		Serial data output (CHO).
PB5/ $\overline{\text { SCK } 1}$	I/O/input/output		Serial clock I/O (CH1).
PB6/SI1	I/O/input		Serial data input (CH1).
PB7/SO1	I/O/output		Serial data output (CH1).
PC0 to PC7	I/O	(Port C) 8 -bit I/O port. I/O can be set in a unit of single bits. Capable of driving 12 mA sync current. Incorporation of pull-up resistor can be set through the software in a unit of 4 bits. (8 pins)	
PD0 to PD7	I/O	(Port D) 8-bit I/O port. I/O can be set in a unit of single bits. Incorporation of pullup resistor can be set through the software in a unit of 4 bits. (8 pins)	
PE0/EC	Input/input	(Port E) 6 -bit port. Lower 4 bits are for inputs; upper 2 bits are for outputs. Incorporation of pull-up resistor can be set through the software. (8 pins)	unter.
PE1	Input		
PE2/RMC	Inputinput		Remote control reception circuit input.
PE3/NMI	Input/input		Non-maskable interruption request input.
PE4/PWM	Output/output		14-bit PWM output.
PE5/TO/ADJ	Output/output/ output		Rectangular wave output for 16 -bit timer/ counter (duty output 50%). Output for 32 kHz oscillation frequency demultiplication.
PF0 to PF7	I/O	(Port F) 8 -bit output port. I/O can be set in a unit of single bits. Incorporation of pull-up resistor can be set through the software in a unit of 4 bits. (8 pins)	

Pin code	I/O	Functions
PG0 to PG7	I/O	(Port G) 8-bit I/O port. I/O can be set in a unit of single bits. Incorporation of pullup resistor can be set through the software in a unit of 4 bits. (8 pins)
PH0 to PH7	I/O	(Port H) 8-bit I/O port. I/O can be set in a unit of single bits. Incorporation of pullup resistor can be set through the software in a unit of 4 bits. (8 pins)
PIO/INTO to PI3/INT3	I/O/input	(Port I) 8-bit output ports. I/O can be set in a unit of single bits. Incorporation of pull-up resistor can be set through the software in a unit of 4 bits. External interruption request inputs.
PI4 to PI7	I/O	(8 pins)
EXTAL	Input	Crystal connectors for system clock oscillation. When the clock is supplied externally, input to EXTAL; opposite phase clock should be input to XTAL.
XTAL	Output	
TEX	Input	Crystal connectors for 32 kHz timer/counter clock generation circuit. Connect a 32.768 kHz crystal oscillator between TEX and TX. For usage as event input, connect clock oscillation source to TEX, and open TX.
TX	Output	
RST	Input	Low-level active, system reset.
NC		NC. Under normal operating conditions, connect to Vod.
AVReF	Input	Reference voltage input for A/D converter.
AVss		A/D converter GND.
VDD		Vcc supply.
Vss		GND

I/O Circuit Format for Pins

\begin{tabular}{|c|c|c|c|}
\hline Pin \& \multicolumn{2}{|r|}{Circuit format} \& When reset \\
\hline \begin{tabular}{l}
PAO/ANO \\
to PA7/AN7 \\
8 pins
\end{tabular} \& \& \& Hi-Z \\
\hline \begin{tabular}{l}
PBo/ \(\overline{\text { CS1 }}\) \\
PB1/CS0 \\
PB3/SIO \\
PB6/SI1 \\
4 pins
\end{tabular} \& \& \& Hi-Z \\
\hline \begin{tabular}{l}
PB2/SCK0 PB5/SCK1 \\
2 pins
\end{tabular} \& Port

Data \& \& Hi-Z

\hline
\end{tabular}

Pin	Circuit format		When reset
PB4/SO0 PB7/SO1 $2 \text { pins }$	Port B Data b		Hi-Z
PC 0 to PC 7 8 pins			Hi-Z
PEO/EC PE1 PE2/RMC PE3/NMI 4 pins	Port E		Hi-Z
PE4/ㄱWM 1 pin	Port E		H level

Pin	Circuit format		When reset
PE5/TO/ADJ 1 pin			H level
PD0 to PD7 PF0 to PF7 PG0 to PG7 PH0 to PH7 PI4 to PI7	Port D Port F Port G Port H Port I		Hi-Z
PIO/INTO to PI3/INT3 4 pins	Port 1		Hi-Z

Pin	Circuit format	When reset
EXTAL XTAL 2 pins		Oscillation
TEX TX 2 pins		Oscillation
$\overline{\mathrm{RST}}$ 1 pin		$\mathrm{Hi}-\mathrm{z}$ or L level (When pull-up resistance is added)

Absolute Maximum Ratings
(Vss = 0V reference)

Item	Symbol	Ratings	Unit	
Supply voltage	VDD	-0.3 to +7.0	V	
	AVss	-0.3 to +0.3	V	
Input voltage	VIN	-0.3 to $+7.0^{* 1}$	V	
Output voltage	Vout	-0.3 to $+7.0^{* 1}$	V	
High level output current	loH	-5	mA	Output per pin
High level total output current	Vloh	-50	mA	Total for all output pins
Low level output current	loL	15	mA	Value per pin, excluding high current outputs
	loLc	20	mA	Value per pin*2 for high current outputs
Low level total output current	$\sum \mathrm{loL}$	100	mA	Total for all output pins
Operating temperature	Topr	-20 to +75	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	
Allowable power dissipation	PD	600	mW	

*1 Vin and Vout must not exceed VdD +0.3 V .
*2 The high current drive transistor is the N -ch transistor of Port C (PC)
Note) Usage exceeding absolute maximum ratings may permanently impair the LSI. Normal operation should be conducted under the recommended operating conditions. Exceeding these conditions may adversely affect the reliability of the LSI.

Recommended Operating Conditions
(Vss = 0V reference)

Item	Symbol	Min.	Max.	Unit	Remarks
Supply voltage	VdD	4.5	5.5	V	High speed mode guaranteed operation range*1
		3.5	5.5		Low speed mode guaranteed operation range*1
		2.7	5.5		Guaranteed operation range with TEX clock
		2.5	5.5		Guaranteed data hold range during STOP
High level input voltage	VIH	0.7 VdD	VDD	V	*2
	Vihs	0.8 VdD	VDD	V	Hysteresis input*3
	Vihex	VDD-0.4	VDD +0.3	V	EXTAL*4
Low level input voltage	VIL	0	0.3Vdd	V	*2
	VILS	0	0.2 VdD	V	Hysteresis input*3
	Vilex	-0.3	0.4	V	EXTAL*4
Operating temperature	Topr	-20	+75	${ }^{\circ} \mathrm{C}$	

*1 High speed mode is $1 / 2$ frequency demultiplication clock selection; low-speed mode is $1 / 16$ frequency demultiplication clock selection.
*2 Value for each pin of normal input ports (PA, PB4, PB7, PC, PD, PE1, PF to PH, PI4 to PI7).
*3 Value of the following pins: $\overline{\mathrm{RST}}, \overline{\mathrm{CS} 0}, \overline{\mathrm{CS} 1}, \overline{\mathrm{SCKO}}, \overline{\mathrm{SCK}}, \mathrm{SIO}, \mathrm{SI} 1, \overline{\mathrm{EC}}, \mathrm{RMC}, \overline{\mathrm{NMI}}, \operatorname{INT} 0, \operatorname{INT} 1$, INT2, INT3.
*4 Specifies only during external clock input.

Electrical Characteristics

DC Characteristics
($\mathrm{Ta}=-20$ to $+75^{\circ} \mathrm{C}$, Vss $=0 \mathrm{~V}$ reference)

Item	Symbol	Pins	Conditions	Min.	Typ.	Max.	Unit
High level output current	Vон	PA to PD, PE4, PE5, PF to PI	$\mathrm{VDD}=4.5 \mathrm{~V}$, $\mathrm{IOH}=-0.5 \mathrm{~mA}$	4.0			V
			$\mathrm{V} \mathrm{DD}=4.5 \mathrm{~V}$, $\mathrm{IoH}=-1.2 \mathrm{~mA}$	3.5			V
Low level output current	Vol		$\mathrm{VDD}=4.5 \mathrm{~V}, \mathrm{loL}=1.8 \mathrm{~mA}$			0.4	V
			$\mathrm{VDD}=4.5 \mathrm{~V}, \mathrm{loL}=3.6 \mathrm{~mA}$			0.6	V
		PC	$\mathrm{V} \mathrm{DD}=4.5 \mathrm{~V}$, IoL $=12.0 \mathrm{~mA}$			1.5	V
Input current	lihe	EXTAL	$\mathrm{V} D \mathrm{D}=5.5 \mathrm{~V}, \mathrm{~V} \mathrm{H}=5.5 \mathrm{~V}$	0.5		40	$\mu \mathrm{A}$
	ILLE		$\mathrm{V} D \mathrm{D}=5.5 \mathrm{~V}, \mathrm{~V}$ IL $=0.4 \mathrm{~V}$	-0.5		-40	$\mu \mathrm{A}$
	ІІнт	TEX	$\mathrm{V} \mathrm{DD}=5.5 \mathrm{~V}, \mathrm{~V} \mathrm{IL}=5.5 \mathrm{~V}$	0.1		10	$\mu \mathrm{A}$
	ILT		$\begin{aligned} & \mathrm{VDD}=5.5 \mathrm{~V}, \\ & \mathrm{~V} \mathrm{IL}=0.4 \mathrm{~V} \end{aligned}$	-0.1		-10	$\mu \mathrm{A}$
	ILLR	RST*1		-1.5		-400	$\mu \mathrm{A}$
	IIL	$\begin{aligned} & \mathrm{PA} \text { to } \mathrm{PD}^{* 2}, \\ & \text { PF to } \mathrm{PI}{ }^{* 2} \end{aligned}$				-5.0	$\mu \mathrm{A}$
			$\mathrm{V} D=4.5 \mathrm{~V}, \mathrm{VIL}=4.0 \mathrm{~V}$	-3.3			$\mu \mathrm{A}$
I/O leakage current	liz	$\begin{aligned} & \hline \mathrm{PEO} \text { to } \mathrm{PE} 3, \\ & \mathrm{RST}^{* 1} \\ & \mathrm{PA} \text { to } \mathrm{PD}^{* 2}, \\ & \mathrm{PF} \text { to } \mathrm{Pl}^{* 2} \end{aligned}$	$\begin{aligned} & V D D=5.5 \mathrm{~V}, \\ & V_{I}=0,5.5 \mathrm{~V} \end{aligned}$			± 10	$\mu \mathrm{A}$
Power supply current*3	IdD1	Vdo	High-speed mode operation ($1 / 2$ frequency demultiplier clock) $\begin{aligned} & \mathrm{VDD}=5.5 \mathrm{~V}, 10 \mathrm{MHz} \text { crystal oscillation } \\ & \left(\mathrm{C}_{1}=\mathrm{C}_{2}=15 \mathrm{pF}\right) \end{aligned}$		18	40	mA
	IdD2		$\begin{aligned} & \text { VDD }=3 \mathrm{~V}, 32 \mathrm{kHz} \text { crystal oscillation } \\ & \left(\mathrm{C}_{1}=\mathrm{C}_{2}=47 \mathrm{pF}\right) \end{aligned}$		35	100	$\mu \mathrm{A}$
	IDDS1		SLEEP modeVDD $=5.5 \mathrm{~V}, 10 \mathrm{MHz}$ $\left(C_{1}=C_{2}=15 \mathrm{pF}\right)$		1.1	8	mA
	IDDS2		$\begin{aligned} & \text { VDD }=3 \mathrm{~V}, 32 \mathrm{kHz} \text { crystal oscillation } \\ & \left(\mathrm{C}_{1}=\mathrm{C}_{2}=47 \mathrm{pF}\right) \end{aligned}$		9	30	$\mu \mathrm{A}$
	IDDS3		$\begin{aligned} & \text { STOP mode } \\ & \begin{array}{\|l\|} \hline \text { VDD }=5.5 \mathrm{~V}, 10 \mathrm{MHz} \text { crystal oscillation; } \\ \text { and termination of } 32 \mathrm{kHz} \text { oscillation } \\ \hline \end{array} \end{aligned}$			10	$\mu \mathrm{A}$
Input capacity	Cin	Pins other than PE4, PE5, XTAL, TX, AVref, AVss, Vdd, Vss	Clock 1MHz OV for all pins excluding measured pins		10	20	pF

[^1]AC Characteristics
(1) Clock timing
($\mathrm{Ta}=-20$ to $+75^{\circ} \mathrm{C}, \mathrm{VDD}=4.5$ to 5.5 V , $\mathrm{Vss}=0 \mathrm{~V}$ reference)

Item	Symbol	Pin	Conditions	Min.	Typ.	Max.	Unit
System clock frequency	fc	XTAL EXTAL	Fig. 1, Fig. 2	1		10	MHz
System clock input pulse width	txL, txH	EXTAL	Fig. 1, Fig. 2 External clock drive	37.5			ns
System clock input rise time, fall time	tcR, tcF	EXTAL	Fig. 1, Fig. 2 External clock drive			200	ns
Event count input clock pulse width	teh, tEL	EC	Fig. 3	tsys + 50*			ns
Event count input clock rise time, fall time	ter, teF	$\overline{\text { EC }}$	Fig. 3			20	ms
System clock frequency	fc	TEX TX	VDD=2.7 to 5.5V Fig. 2 (32kHz clock application condition)		32.768		kHz
Event count input clock input pulse width	tTL, tTH	TEX	Fig. 3	10		ms	
Event count input clock rise time, fall time	tTR, tTF	TEX	Fig. 3	ms			

* tsys indicates the three values below according to the upper two bits (CPU clock selection) of the control clock register (address: 00FEн).
tsys (ns) = 2000/fc (upper two bits = "00"), 4000/fc (upper two bits = "01"), 16000/fc (upper two bits = "11")

Fig. 1. Clock timing

Fig. 2. Clock application conditions

32 kHz clock application condition Crystal oscillation

Fig. 3. Event count clock timing

(2) Serial transfer
($\mathrm{Ta}=-20$ to $+75^{\circ} \mathrm{C}, \mathrm{VDD}=4.5$ to 5.5 V , Vss reference)

Item	Symbol	Pin	Condition	Min.	Max.	Unit
$\begin{aligned} & \overline{\mathrm{CSO}} \downarrow \rightarrow \overline{\mathrm{SCKO}}(\overline{\mathrm{CS1}} \downarrow \rightarrow \overline{\mathrm{SCK1}}) \\ & \text { delay time } \end{aligned}$	tocsk	$\begin{aligned} & \overline{\text { SCK0 }} \\ & \overline{\text { (SCK1 }}) \end{aligned}$	Chip select transfer mode (SCK0 $(\overline{\mathrm{SCK} 1})=$ output mode)		1.5tsys +200	ns
$\overline{\overline{\mathrm{CSO}} \uparrow \rightarrow \overline{\mathrm{SCKO}}(\overline{\mathrm{CS} 1} \uparrow \rightarrow \overline{\mathrm{SCK} 1})}$ float delay time	tocskf	$\begin{array}{\|l} \hline \overline{\text { SCK0 }} \\ \hline(\overline{\text { SCK1 }}) \end{array}$	Chip select transfer mode (SCKO (SCK1) = output mode)		1.5tsys +200	ns
$\begin{aligned} & \overline{\overline{\mathrm{CSO}} \downarrow \rightarrow \mathrm{SOO}(\overline{\mathrm{CS} 1} \downarrow \rightarrow \mathrm{SO} 1)} \\ & \text { delay time } \end{aligned}$	tocso		Chip select transfer mode		1.5tsys + 200	ns
$\overline{\mathrm{CS} 0} \uparrow \rightarrow \mathrm{SOO}(\overline{\mathrm{CS} 1} \uparrow \rightarrow \mathrm{SO} 1)$ float delay time	tbcsof	$\begin{array}{\|l\|l} \hline \text { SO0 } \\ \text { (SO1) } \end{array}$	Chip select transfer mode		1.5tsys + 200	ns
$\overline{\mathrm{CSO}}(\overline{\mathrm{CS} 1})$ High level width	twhes	$\begin{aligned} & \mathrm{CS0} \\ & (\overline{\mathrm{CS} 1}) \end{aligned}$	Chip select transfer mode	tsys + 200		ns
$\overline{\text { SCK0 }}$ ($\overline{\text { SCK1 }}$) cycle time	tkcy	$\begin{aligned} & \overline{\text { SCK0 }} \\ & (\overline{\text { SCK1 })} \end{aligned}$	Input mode	2tsys + 200		ns
			Output mode	16000/fc		ns
$\overline{\mathrm{SCKO}}(\overline{\mathrm{SCK} 1})$ High, Low level width	$\begin{aligned} & \mathrm{t}_{\mathrm{KH}} \\ & \mathrm{t}_{\mathrm{KL}} \end{aligned}$	$\begin{aligned} & \overline{\text { SCK0 }} \\ & (\text { SCK1 }) \end{aligned}$	Input mode	tsys + 100		ns
			Output mode	8000/fc - 50		ns
SIO (SI1) input set-up time (for SCK0 $\uparrow(\overline{\text { SCK1 }} \uparrow)$)	tsik	$\begin{aligned} & \mathrm{SIO} \\ & (\mathrm{SI} 1) \end{aligned}$	$\overline{\text { SCKO }}$ ($\overline{\mathrm{SCK} 1}$) input mode	100		ns
			$\overline{\text { SCK0 }}$ ($\overline{\text { SCK1 }}$) output mode	200		ns
SIO (SI1) input hold time (for SCK0 $\uparrow(\overline{\text { SCK }} 1 \uparrow$))	tksı	SIO (SI1)	SCK0 (SCK1) input mode	tsys + 200		ns
			$\overline{\text { SCK0 }}$ ($\overline{\text { SCK1 }}$) output mode	100		ns
$\overline{\text { SCK0 }} \downarrow \rightarrow \text { SOO } \overline{(\overline{S C K 1}} \downarrow \rightarrow \text { SO1) }$ delay time	tkso	$\begin{aligned} & \text { SO0 } \\ & \text { (SO1) } \end{aligned}$	$\overline{\text { SCK0 }}$ ($\overline{\text { SCK1 }}$) input mode		tsys + 200	ns
			$\overline{\text { SCK0 }}$ ($\overline{\text { SCK1 }}$) output mode		100	ns

Note 1) tsys indicates the three values below according to the upper two bits (CPU clock selection) of the control clock register (address: 00FEн).
tsys $(\mathrm{ns})=2000 / \mathrm{fc}$ (upper two bits = "00"), 4000/fc (upper two bits = "01"), 16000/fc (upper two bits = "11")
Note 2) The load condition for the $\overline{\mathrm{SCKO}}$ ($\overline{\mathrm{SCK} 1}$) output mode, SO0 (SO1) output delay time is $50 \mathrm{pF}+1 \mathrm{TTL}$.

Fig. 4. Serial transfer CHO timing

(3) A/D converter characteristics
$\left(\mathrm{Ta}=-20\right.$ to $+75^{\circ} \mathrm{C}, \mathrm{V} D \mathrm{D}=4.5$ to $5.5 \mathrm{~V}, \mathrm{AV}$ REF $=4.0$ to AV dd, $\mathrm{VsS}=\mathrm{AV} s \mathrm{~S}=0 \mathrm{~V}$

Item	Symbol	Pin	Condition	Min.	Typ.	Max.	Unit
Resolution						8	Bits
Linearity error			$\begin{aligned} & \mathrm{Ta}=25^{\circ} \mathrm{C} \\ & \mathrm{VDD}=5.0 \mathrm{~V} \\ & \mathrm{Vss}=\mathrm{AVss}=0 \mathrm{~V} \end{aligned}$			± 3	LSB
Zero transition voltage	Vz7*1			-10	30	70	mV
Full-scale transition voltage	$\mathrm{VFT}^{*}{ }^{*}$			4930	4970	5010	mV
Conversion time	tconv			160/fadc*3			$\mu \mathrm{S}$
Sampling time	tsamp			12/fADC*3			$\mu \mathrm{s}$
Reference input voltage	Vref	AVref		Vdd - 0.5		Vdd	V
Analog input voltage	Vian	AN0 to AN7		0		AVref	V
AVref current	Iref	AVref	Operation mode		0.6	1.0	mA
	Irefs		SLEEP mode STOP mode 32 kHz operation mode			10	$\mu \mathrm{A}$

Fig. 5. Definition of A / D converter terms

${ }^{*}{ }_{1} \mathrm{VZT}$: Value at which the digital transfer value changes from 00 н to 01н and vice versa.
$*_{2} \mathrm{VFT}_{\mathrm{FT}}$: Value at which the digital transfer value changes from FE н to FFн and vice versa.
*3 fADC indicates the below values due to the contents of bit 6 (CKS) of A/D control resistor (address : 00F9н) and bits 6, 7 (PCK0, 1) of clock control resistor (address : 00FFh).

PCK 1,0	$0(\phi / 2$ selection $)$	$1(\phi$ selection $)$
$00\left(\phi=f_{E X} / 2\right)$	$f_{A D C}=\mathrm{fc} / 2$	$f_{A D C}=\mathrm{fc}$
$01(\phi=\mathrm{fEX} / 4)$	$\mathrm{f}_{\mathrm{ADC}}=\mathrm{fc} / 4$	$\mathrm{f}_{\mathrm{ADC}}=\mathrm{fc} / 2$
$11(\phi=\mathrm{fEX} / 16)$	$\mathrm{f}_{\mathrm{ADC}}=\mathrm{fc} / 16$	$\mathrm{f}_{\mathrm{ADC}}=\mathrm{fc} / 8$

(4) Interruption, reset input ($\mathrm{Ta}=-20$ to $+75^{\circ} \mathrm{C}, \mathrm{VDD}=4.5$ to $5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$ reference)

Item	Symbol	Pin	Condition	Min.	Max.	Unit
External interruption High, Low level width	$\begin{aligned} & \mathrm{t}_{\mathrm{tH}} \\ & \mathrm{t}_{\mathrm{L}} \end{aligned}$	INTO INT1 INT2 INT3 $\overline{\mathrm{NMI}}$		1		$\mu \mathrm{s}$
Reset input Low level width	trsL	$\overline{\text { RST }}$		32/fc		$\mu \mathrm{s}$

Fig 6. Interruption input timing

Fig. 7. $\overline{\text { RST }}$ input timing

Appendix

Fig. 8. Recommended oscillation circuit
(i) Main clock

(ii) Main clock

(iii) Sub clock

Manufacturer	Model	fc (MHz)	$\mathrm{C}_{1}(\mathrm{pF})$	$\mathrm{C} 2(\mathrm{pF})$	Rd (Ω)	Circuit example
MURATA MFG CO., LTD.	CSA4.19MG	4.19	30	30	0	(i)
	CSA8.00MTZ	8.00				
	CSA10.0MTZ	10.00				
	CST4.19MGW*	4.19				(ii)
	CST8.00MTW*	8.00				
	CST10.0MTW*	10.00				
FUJI SANGYO CO., LTD.	HC-49/U03	4.19	12	12	0	(i)
		8.00				
		10.00				
$\begin{aligned} & \text { KINSEKI } \\ & \text { LTD. } \end{aligned}$	HC-49/U (-S)	4.19	27	27	0	
		8.00				
		10.00	20	20		
	P3	32.768 kHz	50	22	1M	(iii)

Those marked with an asterisk (${ }^{*}$) signify types with built-in ground capacitance $\left(\mathrm{C}_{1}, \mathrm{C}_{2}\right)$.

Mask option table

Item	Content	
Reset pin pull-up resistance	No	Yes

Characteristics Curve

Idd vs. V dD

IdD vs. fc
(VDD $=5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$, Typical)

Package Outline Unit: mm

80PIN QFP (PLASTIC)

DETAIL A

SONY CODE	QFP-80P-L01
EIAJ CODE	*QFP080-P-1420-A
JEDEC CODE	

PACKAGE STRUCTURE

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER PLATING
LEAD MATERIAL	COPPER / 42 ALLOY
PACKAGE WEIGHT	1.6 g

[^0]: Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

[^1]: *1 $\overline{\mathrm{RST}}$ specifies the input current when pull-up resistance has been selected; leakage current when no resistance has been selected.
 *2 Pins PA to PD, and PF to PI specifies the input current when pull-up resistance has been selected; leakage current when no resistance has been selected.
 *3 When all pins are open.

