CMOS 8-bit Single Chip Microcomputer

Description

The CXP845F60 is a CMOS 8-bit microcomputer integrating on a single chip an A/D converter, serial interface, timer/counter, time-base timer, capture timer/counter, PWM output and the like besides the basic configurations of 8 -bit CPU, flash EEPROM, RAM and I/O port.
The CXP845F60 also provides a sleep/stop functions that enable to execute the power-on reset function or
 lower the power consumption.
The CXP845F60 is the flash EEPROM-incorporated version of the CXP84540/84548 with a built-in mask ROM. This enables program writing and erasing. Thus, it is most suitable for evaluation use during system development and for small-quantity production.

Features

- A wide instruction set (213 instructions) which covers various types of data
- 16-bit arithmetic/multiplication and division/Boolean bit operation instructions
- Minimum instruction cycle 143 ns at 28 MHz operation (4.5 to 5.5 V)
- Incorporated flash EEPROM 60K bytes

Rewrite time 100 times

- Incorporated RAM
- Peripheral functions
- A/D converter
— Serial interface Incorporated 8-bit, 8-stage FIFO (Auto transfer for 1 to 8 bytes, latch output function, MSB/LSB first selectable), 1 channel
8 -bit clock sync type, 1 channel
— Timer
8-bit timer
8-bit timer/counter
19-bit time-base timer
16-bit capture time/counter
- PWM output
- Interruption
- Standby mode

8 bits, 2 channels
14 factors, 14 vectors, multi-interruption possible
Sleep/stop

- Package 80-pin plastic QFP

Structure

Silicon gate CMOS IC

[^0]

Pin Assignment 1 (Top View)

Notes) 1. $\overline{\mathrm{PWE}}$ (Pin 73) is left open during normal operation.
2. See the Appendix concerning the Pins 57 to 59 (TETA, TETB and TETC).

Pin Description

Symbol	I/O	Description
PGO to PG7	I/O	(Port G) 8-bit I/O port. I/O can be set in a unit of single bits. Incorporation of pull- up resistor can be set through the software in a unit of 4 bits. (8 pins)
PH0 to PH7	I/O	(Port H) 8-bit I/O port. I/O and standby release input function can be set in a unit of single bits. Incorporation of pull-up resistor can be set through the software in a unit of 4 bits. (8 pins)
PI0/INT0 to	I/O/Input	(Port I) 8-bit I/O port. I/O can be set in a unit of single bits. Incorporation of pull-up resistor can be set through the software in a unit of 4 bits. (8 pins)
PI4 to PI7	I/O	External interruption request inputs. (4 pins)
EXTAL	Input	Connects a crystal for system clock oscillation. When the clock is supplied externally, input to EXTAL; opposite phase clock should be input to XTAL.
XTAL	Output	I/O
$\overline{\text { RST }}$	System reset for active at Low level. This pin is I/O pin, and outputs Low level at the power on with the power-on reset function executed.	
$\overline{\text { PWE }}$	Input	Flash EEPROM write enable pin. Write is enabled at Low level; write is prohibited at High level. Leave this pin open for normally operation.
AVREF	Input	Reference voltage input for A/D converter.
AVss	A/D converter GND.	
VDD	Positive power supply.	
Vss	GND	

Input/Output Circuit Formats for Pins

Pin		Circuit format	When reset
PAO/ANO to PA7/AN7 8 pins	Port A Data		Hi-Z
PBO/LATO 1 pin	Port B Data bu		Hi-Z
PB1/CS0 PB3/SI0 PB6/SI1 3 pins	Port B Data bu		Hi-Z

\begin{tabular}{|c|c|c|}
\hline Pin \& Circuit format \& When reset \\
\hline \begin{tabular}{l}
PB2/SCK0 \\
PB5/SCK1 \\
2 pins
\end{tabular} \& Port B \& Hi-Z \\
\hline \begin{tabular}{l}
PB4/SO0 PB7/SO1 \\
2 pins
\end{tabular} \& Port B \& Hi-Z \\
\hline PC0 to PC7

8 pins \& Port C \& Hi-Z

\hline
\end{tabular}

Pin	Circuit format	When reset
PEO/EC0 PE1/EC1 PE2/CINT PE3/NMI/ (TETC) 4 pins	Port E	Hi-Z
PE4/PWM0/ (TETB) 1 pin	Port E	High level
PE5/TO/ PWM1/ (TETA) 1 pin	Port E	High level High level at ON resistance of pull-up transistor during a reset.
PE6, PE7 2 pins	Port E	Low level

Pin		Circuit format	When reset
PD0 to PD7 PF0 to PF7 PG0 to PG7 PI4 to PI7 $28 \text { pins }$	Port D Port F Port G Port I		Hi-Z
PH 0 to PH 7 8 pins	Port H Data bus Standby		Hi-Z
PIO/INTO to PI3/INT3 4 pins	Port I Data		$\mathrm{Hi}-\mathrm{Z}$

Pin	Circuit format	When reset
EXTAL XTAL 2 pins		Oscillation
$\overline{\text { RST }}$ 1 pin		Low level
$\overline{\text { PWE }}$ 1 pin		High level

Absolute Maximum Ratings
(Vss = 0V reference)

Item	Symbol	Ratings	Unit	
Supply voltage	Vod	-0.3 to +7.0	V	
	AVss	-0.3 to +0.3	V	
Input voltage	VIN	-0.3 to $+7.0^{* 1}$	V	
Output voltage	Vout	-0.3 to $+7.0^{* 1}$	V	
High level output current	loH	-5	mA	Output (value per pin)
High level total output current	LloH	-50	mA	Total for all output pins
Low level output current	loL	15	mA	All pins excluding large current outputs (value per pin)
	loLc	20	mA	Large current outputs (value per pin*2)
	LloL	100	mA	Total for all output pins
Operating temperature	Topr	-20 to +75	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	
Allowable power dissipation	PD	600	mW	

*1 VIN and Vout must not exceed VDD +0.3 V .
*2 The large current drive transistor is the N -ch transistor of Port C (PC).
Note) Usage exceeding absolute maximum ratings may permanently impair the LSI. Normal operation should be conducted under the recommended operating conditions. Exceeding these conditions may adversely affect the reliability of the LSI.

Recommended Operating Conditions
(Vss = 0V reference)

Item	Symbol	Min.	Max.	Unit	Remarks
Supply voltage	Vdd	4.5	5.5	V	Guaranteed operation range for $1 / 2$ and $1 / 4$ frequency dividing modes
		3.5	5.5		Guaranteed operation range for $1 / 16$ frequency dividing and sleep modes
		2.0	5.5		Guaranteed data hold range during stop mode
High level input voltage	VIH	0.7 Vdd	VDD	V	*1
	Vihs	0.8 VdD	VDD	V	Hysteresis input*2
	Vihex	Vdd - 0.4	Vdd + 0.3	V	EXTAL*3
Low level input voltage	VIL	0	0.3Vdd	V	* 1
	Vils	0	0.2Vdd	V	Hysteresis input*2
	Vilex	-0.3	+0.4	V	EXTAL*3
Operating temperature	Topr	-20	+75	${ }^{\circ} \mathrm{C}$	

*1 Normal input ports (PA, PB0, PB4, PB7, PC, PE0 to PE3, PD, PF to PH, PI4 to PI7)
*2 $\overline{\mathrm{RST}}, \mathrm{CINT}, \overline{\mathrm{CSO}}, \overline{\mathrm{SCK0}}, \overline{\mathrm{SCK} 1}, \overline{\mathrm{EC0}}, \overline{\mathrm{EC} 1}, \mathrm{SI0}, \mathrm{SI} 1, \overline{\mathrm{NMI}}$, INT0, INT1, INT2, INT3
*3 Specifies only during external clock input.

Electrical Characteristics

DC Characteristics (VDD $=4.5$ to 5.5 V)
($\mathrm{Ta}=-20$ to $+75^{\circ} \mathrm{C}, \mathrm{Vss}=0 \mathrm{~V}$ reference $)$

Item	Symbol	Pin	Conditions	Min.	Typ.	Max.	Unit
High level output voltage	VOH	PA to PD, PE4 to PE7, PF to PI, $\overline{\mathrm{RST}}$ (only VoL)	$\mathrm{V} \mathrm{DD}=4.5 \mathrm{~V}$, $\mathrm{IOH}=-0.5 \mathrm{~mA}$	4.0			V
			V DD $=4.5 \mathrm{~V}$, $\mathrm{loH}=-1.2 \mathrm{~mA}$	3.5			V
Low level output voltage	Vol		$\mathrm{VDD}=4.5 \mathrm{~V}, \mathrm{loL}=1.8 \mathrm{~mA}$			0.4	V
			$\mathrm{VDD}=4.5 \mathrm{~V}$, lol $=3.6 \mathrm{~mA}$			0.6	V
		PC	$\mathrm{V} D \mathrm{DD}=4.5 \mathrm{~V}, \mathrm{loL}=12.0 \mathrm{~mA}$			1.5	V
Input current	IIHE	EXTAL	$\mathrm{V}_{\text {dD }}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=5.5 \mathrm{~V}$	0.1		25	$\mu \mathrm{A}$
	IILE		$\mathrm{V} D \mathrm{D}=5.5 \mathrm{~V}, \mathrm{~V}$ IL $=0.4 \mathrm{~V}$	-0.1		-25	$\mu \mathrm{A}$
	IlLR	$\overline{\mathrm{RST}}$	V DD $=5.5 \mathrm{~V}, \mathrm{VIL}=4.0 \mathrm{~V}$	-1.5		-400	$\mu \mathrm{A}$
	IIL	$\begin{aligned} & \text { PA to } \mathrm{PD}^{* 1} \\ & \text { PF to } \mathrm{PI}^{* 1} \end{aligned}$				-50	$\mu \mathrm{A}$
			$\mathrm{V} D \mathrm{DD}=4.5 \mathrm{~V}, \mathrm{~V}$ IL $=4.0 \mathrm{~V}$	-2.78			$\mu \mathrm{A}$
I/O leakage current	IIz	$\begin{aligned} & \text { PA to } \mathrm{PD}^{* 1} \\ & \text { PF to } \mathrm{PI}^{* 1} \\ & \text { PE0 to PE3 } \end{aligned}$	$\begin{aligned} & \mathrm{VDD}=5.5 \mathrm{~V} \\ & \mathrm{~V} I=0,5.5 \mathrm{~V} \end{aligned}$			± 10	$\mu \mathrm{A}$
Supply current *2	IDD1	Vdd	For 1/2 frequency dividing mode		38	66	mA
	IDD2		VDD $=5.5 \mathrm{~V}, 28 \mathrm{MHz}$ crystal oscillation ($\mathrm{C}_{1}=\mathrm{C}_{2}=1 \mathrm{pF}$)				
	IDDS1		Sleep mode		2.5	10	mA
	IDDS2		$\begin{aligned} & \text { VDD }=5.5 \mathrm{~V}, 28 \mathrm{MHz} \text { crystal oscillation } \\ & \left(\mathrm{C}_{1}=\mathrm{C}_{2}=1 \mathrm{pF}\right) \end{aligned}$				
			Stop mode				
	IDDS3		VDD $=5.5 \mathrm{~V}$, termination of 28 MHz crystal oscillation			30	$\mu \mathrm{A}$
Input capacity	Cin	PA to PD, PE0 to PE3, PF to PI, EXTAL, RST	Clock 1 MHz OV for all pins excluding measured pins		10	20	pF

*1 For PA to PD and PF to PI pins, specifies the input current when pull-up resistance is selected; leakage current when no resistance is selected.
*2 When all output pins are left open.

AC Characteristics

(1) Clock timing
$\left(\mathrm{Ta}=-20\right.$ to $+75^{\circ} \mathrm{C}, \mathrm{VDD}=4.5$ to $5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$ reference $)$

Item	Symbol	Pin	Conditions	Min.	Typ.	Max.	Unit
System clock frequency	fc	XTAL EXTAL	Fig. 1, Fig. 2	1		28	MHz
System clock input pulse width	$\begin{aligned} & \mathrm{txL}, \\ & \mathrm{txH} \end{aligned}$	EXTAL	Fig. 1, Fig. 2 External clock drive	15.6			ns
System clock input rise time, fall time	tcr, tcF	EXTAL	Fig. 1, Fig. 2 External clock drive			100	ns
Event count input clock pulse width	$\mathrm{t}_{\mathrm{E}},$ tel	$\overline{\overline{\mathrm{ECO}}}$	Fig. 3	tsys $+50^{* 1}$			ns
Event count input clock rise time, fall time	tER, tef	$\overline{\overline{E C 0}} \overline{\text { EC1 }}$	Fig. 3			20	ms

*1 tsys indicates the three values according to the contents of the clock control register (CLC: 00FEh) upper 2 bits (CPU clock selection).
tsys [ns] = 2000/fc (Upper 2 bits = "00"), 4000/fc (Upper 2 bits = "01"), 16000/fc (Upper 2 bits = "11")

Fig. 1. Clock timing

Fig. 2. Clock applied conditions

Fig. 3. Event count clock timing
(2) Serial transfer (CHO)
$\left(\mathrm{Ta}=-20\right.$ to $+75^{\circ} \mathrm{C}, \mathrm{VdD}=4.5$ to $5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$ reference)

Item	Symbol	Pin	Conditions	Min.	Max.	Unit
$\overline{\overline{\mathrm{CSO}} \downarrow \rightarrow \overline{\mathrm{SCKO}}}$ delay time	tocsk	$\overline{\text { SCKO }}$	Chip select transfer mode $\overline{\text { (SCKO }}=$ output mode)		1.5 tsys +100	ns
$\overline{\mathrm{CSO}} \uparrow \rightarrow \overline{\mathrm{SCKO}}$ float delay time	tocskf	$\overline{\text { SCKO }}$	Chip select transfer mode $\overline{(S C K 0}=$ output mode)		1.5 tsys +100	ns
$\overline{\mathrm{CSO}} \downarrow \rightarrow \mathrm{SOO}$ delay time	tocso	SOO	Chip select transfer mode		1.5 tsys +100	ns
$\overline{\mathrm{CSO}} \uparrow \rightarrow \mathrm{SOO}$ float delay time	tocsof	SOO	Chip select transfer mode		1.5 tsys +100	ns
$\overline{\text { CSO }}$ High level width	twhcs	$\overline{\text { cSo }}$	Chip select transfer mode	tsys + 150		ns
SCKO cycle time	tкcy	$\overline{\text { SCKO }}$	Input mode	2tsys +200		ns
			Output mode	8000/fc		ns
SCKO High, Low level width	$\begin{aligned} & \text { tKH } \\ & \text { tKL } \end{aligned}$	$\overline{\text { SCKO }}$	Input mode	tsys + 90		ns
			Output mode	4000/fc - 25		ns
SIO input setup time (for SCKO \uparrow)	tsik	SIO	$\overline{\text { SCKO input mode }}$	50		ns
			$\overline{\text { SCKO }}$ output mode	100		ns
SIO input hold time (for SCKO \uparrow)	tksı	SIO	$\overline{\text { SCKO }}$ input mode	tsys +100		ns
			$\overline{\text { SCKO }}$ output mode	50		ns
$\overline{\text { SCKO }} \downarrow \rightarrow$ SOO delay time	tkso	SOO	$\overline{\text { SCK0 }}$ input mode		tsys +100	ns
			$\overline{\text { SCKO }}$ output mode		50	ns
$\overline{\text { SCKO }} \uparrow \rightarrow$ LATO output delay time	tladly	LAT0	Latch output mode (SCKO = output mode)	tксу	tксу + 50	ns
LAT0 data pulse width	tıapls	LAT0	Latch output mode (SCKO $=$ output mode)	tкč - 10	tкcy + 50	ns

Note 1) tsys indicates the three values according to the contents of the clock control register (CLC: 00FEh) upper 2 bits (CPU clock selection).
tsys [ns] = 2000/fc (Upper 2 bits = "00"), 4000/fc (Upper 2 bits = "01"), 16000/fc (Upper 2 bits = "11")
Note 2) The load condition for the SCKO output mode, SOO output delay time is $50 \mathrm{pF}+1 \mathrm{TTL}$.

Fig. 4. Serial transfer CHO timing
(3) Serial transfer (CH1)
$\left(\mathrm{Ta}=-20\right.$ to $+75^{\circ} \mathrm{C}, \mathrm{VdD}=4.5$ to $5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$ reference $)$

Item	Symbol	Pin	Conditions	Min.	Max.	Unit
SCK1 cycle time	tкıy	$\overline{\text { SCK1 }}$	Input mode	500		ns
			Output mode	8000/fc		ns
SCK1 High, Low level width	$\begin{aligned} & \mathrm{t}_{\mathrm{KH}} \\ & \mathrm{t} ⿵ 冂^{\prime} \end{aligned}$	SCK1	Input mode	200		ns
			Output mode	4000/fc - 25		ns
Sl1 input setup time (for SCK1 \uparrow)	tsık	SI1	SCK1 input mode	50		ns
			$\overline{\text { SCK1 }}$ output mode	100		ns
SI1 input hold time (for SCK1 \uparrow)	tкsı	SI1	$\overline{\text { SCK1 } 1}$ input mode	100		ns
			SCK1 output mode	50		ns
$\overline{\text { SCK1 }} \downarrow \rightarrow$ SO1 delay time	tkso	SO1	$\overline{\text { SCK1 } 1}$ input mode		100	ns
			$\overline{\text { SCK1 }}$ output mode		50	ns

Note) The load condition for the $\overline{\text { SCK1 }}$ output mode, SO1 output delay time is $50 \mathrm{pF}+1$ TTL.

Fig. 5. Serial transfer CH1 timing
(4) A/D converter characteristics $\left(\mathrm{Ta}=-20\right.$ to $+75^{\circ} \mathrm{C}, \mathrm{VDD}=4.5$ to $5.5 \mathrm{~V}, \mathrm{AV}$ REF $=4.0$ to $\mathrm{VDD}, \mathrm{V} S S=\mathrm{AVSS}=0 \mathrm{~V}$ reference)

Item	Symbol	Pin	Conditions	Min.	Typ.	Max.	Unit
Resolution						8	Bits
Linearity error			$\begin{aligned} & \mathrm{Ta}=25^{\circ} \mathrm{C} \\ & \mathrm{VDD}=\mathrm{AV} \mathrm{VEF}=5.0 \mathrm{~V} \\ & \mathrm{VsS}=\mathrm{AV} \text { SS }=0 \mathrm{~V} \end{aligned}$			± 4	LSB
Zero transition voltage	Vz7*1			-10	10	70	mV
Full-scale transition voltage	$\mathrm{VFT}^{*}{ }^{*}$			4910	4970	5030	mV
Conversion time	tconv			27/fadc*3			$\mu \mathrm{S}$
Sampling time	tsamp			6/fadc*3			$\mu \mathrm{s}$
Reference input voltage	Vref	AVref		VDd - 0.5		VDD	V
Analog input voltage	VIAN	AN0 to AN7		0		AVref	V
AVref current	IreF	AVref	Operation mode		0.6	1.0	mA
	Irefs		Sleep mode Stop mode			10	$\mu \mathrm{A}$

Fig. 6. Definition of A/D converter terms
(5) Interruption, reset input $\quad\left(\mathrm{Ta}=-20\right.$ to $+75^{\circ} \mathrm{C}, \mathrm{VDD}=4.5$ to 5.5 V , $\mathrm{VSS}=0 \mathrm{~V}$ reference $)$

Item	Symbol	Pin	Conditions	Min.	Max.	Unit
External interruption High, Low level width	IIH	INT0 INT1 INT2				
INT3 INT		1		$\mu \mathrm{~s}$		
Reset input Low level width	$\mathrm{t}_{\text {RSL }}$	$\overline{\text { RST }}$				

Fig 7. Interruption input timing

Fig. 8. $\overline{\operatorname{RST}}$ input timing
(6) Power-on reset
($\mathrm{Ta}=-20$ to $+75^{\circ} \mathrm{C}, \mathrm{VDD}=4.5$ to $5.5 \mathrm{~V}, \mathrm{VSs}=0 \mathrm{~V}$ reference $)$

Item	Symbol	Pin	Conditions	Min.	Max.	Unit
Power supply rise time	t_{R}	Vod	Power-on reset	0.05	50	ms
	Power supply cut-off time			Repetitive power-on reset	1	

Turn the power on smoothly.
Fig. 9. Power-on reset

Appendix

(i) Main clock

(ii) Main clock

Fig. 10. SPC700 Series recommended oscillation circuit

Manufacturer	Model	fc (MHz)	$\mathrm{C}_{1}(\mathrm{pF})$	$\mathrm{C} 2(\mathrm{pF})$	Rd (Ω)	Circuit example
MURATA MFG CO., LTD.	CSA8.00MTZ	8.00	30	30	0	(i)
	CSA10.0MTZ	10.00				
	CSA12.00MTZ	12.00				
	CST8.00MTW*1	8.00				(ii)
	CST10.0MT*1	10.00				
	CST12.0MTW*1	12.00				
	CSA16.00MXZ040	16.00	5	5	0	(i)
	CST16.00MXZOC1*1	16.00	5	5	0	(ii)
	CSA20.00MXZ040	20.00	OPEN	OPEN	0	(i)
	CSA24.00MXZ040	24.00	3	3	0	
	CSA28.00MXZ040	28.00	3	3	0	
TDK CORPORATION.	CCR20.0MC6*1	20.00	16	16	0	(ii)
	CCR24.0MC6*1	24.00	16	16	0	
KINSEKI LTD.	HC49/U-S	28.00	1	1	220	(i)
	CX-11F	28.00	1	1	220	

${ }^{*} 1$ Models with the built-in ground capacitance ($\mathrm{C}_{1}, \mathrm{C}_{2}$).

Selection Guide

Option item	Mask	
CXP845F60Q-1- $\square \square \square$		
Package \square	100-pin plastic QFP	
ROM capacitance	40 K bytes	48K bytes
Flash EEPROM 60K bytes		
Reset pin pull-up resistor	Existent/Non-existent	

Characteristics Curves

Writing to Flash EEPROM

The CXP845F60 contains the 60K bytes of flash EEPROM. There are two methods to write to the flash EEPROM; off-board write and on-board write.
The on-board write supports boot mode and user programming mode. Rewriting at the room temperature is recommended.

1. Off-board write

In order to execute the off-board write, the microcomputer is attached on a conversion adaptor and the adaptor is inserted in the socket of the SFP-1 (flash memory programmer) or NICE-SPC700R. (See Fig. 11.)
See the operation manuals for the operation methods of the SFP-1 and NICE-SPC700R. (Mitec SYSTEMS, Inc. manufactures and sells the SFP-1 and NICE-SPC700R.)

Fig. 11. Off-board write (when writing by using SFP-1)

2. On-board write

This is performed with the microcomputer mounted on the board. The CXP845F60 supports boot mode and user programming mode.
In boot mode, write is performed through the communication with the SFP-1 as shown in Fig. 12.

Flash memory programmer SFP-1
Fig. 12. On-board write boot mode

In user programming mode, write is performed in microcomputer mode (normal operation mode) by the communication method (SIO, I/O, etc.) according to the user's application. See the guide of the CXP845F60 write for actual use.

When the on-board write is performed, the pins and flash mode register (FMOD: 01F4h, OFFOh) should be set as follows.

Mode		Pins					FMOD resister
		$\overline{\mathrm{RST}}$	TETA	TETB	TETC	$\overline{\text { PWE }}$	FLMOD bit
Onboard write	Boot mode		Low fixed	High output	High fixed	Low fixed	$1^{* 1}$
	User programming mode	High level	X	X	X		1

*1 FLMOD bit is set to "1" automatically in boot mode.
X: don't care

*1 The Vpp signal for the SFP-1 is pulled down with $4.7 \mathrm{k} \Omega$. Connecting cable permits writing when PWE pin is fixed at low level. Also, it can be used as select signal of the switching circuit.

Fig. 13. Connection example for boot mode

Pin No.	Connector for SFP-1 (AMP CT receptacle 173977-8)		Signal direction	Connector for user board (AMP CT connector 175489-8)	
	Symbol	Remarks		Symbol	
1	GND			GND	
2	SI	$4.7 \mathrm{k} \Omega$ pull-up	\leftarrow	SO1	
3	SO	Open drain, $4.7 \mathrm{k} \Omega$ pull-up	\rightarrow	SI1	
4	$\overline{\text { SCK }}$	Open drain, $4.7 \mathrm{k} \Omega$ pull-up	\leftrightarrow	$\overline{\text { SCK } 1}$	
5	$\overline{\text { RST }}$	Open drain, $4.7 \mathrm{k} \Omega$ pull-up	\rightarrow	$\overline{\text { RST }}$	Pull-up in the microcomputer (mask option)
6	VIN		\leftarrow	VDD	
7	GND			GND	
8	Vpp	$4.7 \mathrm{k} \Omega$ pull-up	\rightarrow	$\overline{\text { PWE }}$	Pull-up in the microcomputer

80PIN QFP (PLASTIC)

DETAIL A

SONY CODE	QFP-80P-L01
EIAJ CODE	$*$ QFP080-P-1420-A
JEDEC CODE	-

PACKAGE STRUCTURE

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER PLATING
LEAD MATERIAL	COPPER / 42 ALLOY
PACKAGE WEIGHT	1.6 g

[^0]: Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

