CMOS 8-bit Single Chip Microcomputer

Description

The CXP846P48 is a CMOS 8-bit single chip microcomputer integrating on a single chip an A/D converter, serial interface, timer/counter, time base timer, capture timer/counter, $\mathrm{I}^{2} \mathrm{C}$ bus interface, remote control reception circuit, PWM output, and 32 kHz timer/counter besides the basic configurations of 8-bit CPU, PROM, RAM, and I/O port.
The CXP846P48 also provides a sleep/stop function that enables lower power consumption.
The CXP846P48 is the PROM-incorporated version of the CXP846P48 with built-in mask ROM. This provides the additional feature of being able to write directly into the program, Thus, it is most suitable for evaluation use during system development and for small-quantity production.

Structure

Silicon gate CMOS IC

Features

- Wide range instruction system (213 instructions) to cover various of data.
- 16-bit arithmetic/multiplication and division/Boolean bit operation instructions
- Minimum instruction cycle 250 ns at 16 MHz operation (4.5 to 5.5 V)

333 ns at 12 MHz operation (3.0 to 5.5 V)
$122 \mu \mathrm{~s}$ at 32 kHz operation (2.7 to 5.5 V)

- Incorporated PROM capacity
- Incorporated RAM capacity
- Peripheral functions
- A/D converter
- Serial interface
— Timer
- $I^{2} C$ bus interface
- Remote control reception circuit
- PWM output circuit
- Interruption
- Standby mode
- Package 48K bytes
2048 bytes
8 bits, 8 channels, successive approximation method (Conversion time $20 \mu \mathrm{~s} / 16 \mathrm{MHz}$)
Srart-stop synchronization (UART), 1 channel Incorporated buffer RAM (Auto transfer for 1 to 32 bytes), 1 channel Incorporated 8-bit, 10-stage FIFO
(Auto transfer for 1 to 10 bytes), 1 channel
8 -bit clock syncronization (MSB/LSB first selectable), 1 channel
8-bit timer, 8-bit timer/counter, 19-bit time base timer, 16-bit capture timer/counter, 32 kHz timer/counter
- Piggyback/evaluation chip

8 -bit pulse measurement counter, 6-stage FIFO 12 bits, 2 channels
21 factors, 15 vectors, multi-interruption possible
SLEEP/STOP
80-pin plastic QFP
CXP84600 80-pin ceramic QFP

Perchase of Sony's $I^{2} \mathrm{C}$ components conveys a licence under the Philips ${ }^{2}{ }^{2} \mathrm{C}$ Patent Rights to use these components in an $I^{2} \mathrm{C}$ system, provided that the system conforms to the $\mathrm{I}^{2} \mathrm{C}$ Standard Specifications as defined by Philips.

[^0]

Block Diagram

Pin Assignment (Top View)

Note) Vpp (Pin 73) must be connected Vod.

Pin Description

Pin code	1/O		Functions
$\begin{aligned} & \text { PAO/AN0 } \\ & \text { to } \\ & \text { PA7/AN7 } \end{aligned}$	1/O/Analog input	(Port A) 8-bit I/O port. I/O can be set in a unit of signle bits. Incorporation of the pullup resistance can be set through the software in a unit of 4 bits. (8 pins)	Analog inputs to A/D converter. (8 pins)
PB0/CINT	I/O/Input	(Port B) I/O can be set in a unit of single bits for lower 7 bits. Incorporation of pull-up resistor can be set through the software in a unit of 4 bits. (8 pins)	External capture input to 16-bit timer/counter.
PB1/CS0	I/O/Input		Chip select input for serial interface (CHO).
PB2/SCK0	1/0///O		Serial clock I/O (CHO).
PB3/SIO	I/O/Input		Serial data input (CHO).
PB4/SO0	I/O/Output		Serial data output (CHO).
PB5/SCK1	1/0///O		Serial clock I/O (CH1).
PB6/SI1	I/O/Input		Serial data input (CH1).
PB7/SO1	I/O/Output		Serial data output (CH1).
PC0 to PC7	I/O	(Port C) 8-bit I/O port. I/O can be set in a unit of single bits. Capable of driving 12 mA sync current. Incorporation of pull-up resistor can be set through the software in a unit of 4 bits. (8 pins)	
PD0 to PD7	I/O	(Port D) 8-bit I/O port. I/O can be set in a unit of single bits. Incorporation of pullup resistor can be set through the software in a unit of 4 bits. (8 pins)	
PE0/EC0	Input/Input	(Port E) 6-bit port. Lower 4 bits are for inputs; upper 2 bits are for outputs. (6 pins)	External event inputs for timer/counter. (2 pins)
PE1/EC1	Input/Input		
PE2/RMC	Input/Input		Remote control reception circuit input.
PE3/\MMI	Input/Input		Non-maskable interruption request input.
PE4	Output		
PE5/TO/ ADJ	Output/Output/ Output		Rectangular wave output for 16 -bit timer/counter Output for 32 kHz oscillation frequency division.
$\begin{aligned} & \text { PF0/SCL0 } \\ & \text { PF1/SCL1 } \end{aligned}$	Output//O	(Port F) Lower 7 bits are for output; of which lower 4 bits are large current (12mA) N-ch open drain output. The uppermost bit (PF7) is for input. (8pins)	Transfer clock I/O for ${ }^{2} \mathrm{C}$ bus interface. (2pins)
$\begin{array}{\|l} \text { PF2/SDA0 } \\ \text { PF3/SDA1 } \end{array}$	Output//O		Transfer data I/O for $\mathrm{I}^{2} \mathrm{C}$ bus interface. (2pins)
PF4/PWM0	Output/Output		$\overline{\text { PWM outputs. }}$
PF5/PWM1	Output/Output		(2pins)
PF6/TxD	Output/Output		UART transmission data output.
PF7/RxD	Input/Input		UART reception data input.

Pin code	1/O	Functions	
PG0 to PG7	I/O	(Port G) 8-bit I/O port. I/O can be set in a unit of single bits. Incorporation of pullup resistor can be set through the software in a unit of 4 bits. (8 pins)	
PH0 to PH7	I/O	(Port H) 8-bit I/O port. I/O can be set in a unit of single bits. Incorporation of pullup resistor can be set through the software in a unit of 4 bits. (8 pins)	
$\begin{gathered} \text { PIO/INT0 } \\ \text { to } \\ \text { PI4/INT4 } \end{gathered}$	I/O/Input	(Port I) 8-bit I/O port. I/O can be set in a unit of single bits. Incorporation of pull-up resistor can be set through the software in a unit of 4 bits. (8 pins)	External interruption request inputs. (5 pins)
PI5/SCK2	1/0///O		Serial clock I/O. (CH2)
PI6/SI2	I/O/Input		Serial data input. (CH2)
PI7/SO2	1/O/Output		Serial data output. (CH2)
EXTAL	Input	Crystal connectors for system clock oscillation. When the clock is supplied externally, input to EXTAL; opposite phase clock should be input to XTAL.	
XTAL	Output		
TEX	Input	Crystal connectors for 32 kHz timer/counter clock oscillation. For usage as event counter, input to TEX, and open TX.	
TX	Output		
$\overline{\mathrm{RST}}$	Input	Low-level active, system reset.	
Vpp		Positive power supply pin for built-in PROM writing. Connect to Vdd for normal operation.	
AVREF	Input	Reference voltage input for A/D converter.	
AVss		A/D converter GND.	
VDD		Positive power supply.	
Vss		GND.	

I/O Circuit Format for Pins

Pin		Circuit format	When reset
PAO/ANO to PA7/AN7 8 pins	Port A		Hi-Z
$\begin{aligned} & \mathrm{PB0} / \mathrm{CINT} \\ & \mathrm{~PB} 1 / \mathrm{CSO} \\ & \mathrm{PB3} / \mathrm{SIO} \\ & \mathrm{PB6} / \mathrm{SI1} \\ & \mathrm{PI} / \mathrm{SI} 2 \end{aligned}$ 5 pins	Port B Port I		$\mathrm{Hi}-\mathrm{Z}$
PB2/ $\overline{\text { SCK0 }}$ PB5/SCK1 PI5/SCK2 3 pins	Port B Port I Data		$\mathrm{Hi}-\mathrm{Z}$

\begin{tabular}{|c|c|c|c|}
\hline Pin \& \multicolumn{2}{|r|}{Circuit format} \& When reset

\hline PB4/SO0 PB7/SO1 Pl7/SO2 \& \multicolumn{2}{|l|}{} \& Hi-Z

\hline PC0 to PC7

8 pins \& Port C \& \& Hi-Z

\hline | PE0/ECO |
| :--- |
| PE1/EC1 |
| PE2/RMC |
| PE3/NMI |
| PF7/RxD |
| 5 pins | \& | Port E |
| :--- |
| Port F | \& \& Hi-Z

\hline PE4

1 pin \& Port E \& \& High level

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Pin \& \multicolumn{2}{|r|}{Circuit format} \& When reset

\hline PE5/TO/ADJ

1 pin \& | Port E |
| :--- |
| Port E f | \& \& \[

$$
\begin{gathered}
\text { High level } \\
\left(\begin{array}{c}
\text { with approx. } \\
150 \mathrm{k} \Omega \\
\text { resistor } \\
\text { when reset }
\end{array}\right)
\end{gathered}
$$
\]

\hline | PD0 to PD7 |
| :--- |
| PG0 to PG7 |
| PH0 to PH7 |
| 24 pins | \& \[

$$
\begin{aligned}
& \hline \text { Port D } \\
& \hline \text { Port G } \\
& \hline \text { Port H } \\
& \hline
\end{aligned}
$$
\] \& \& Hi-Z

\hline | PIO/INTO |
| :--- |
| to PI4/INT4 |
| 5 pins | \& \& \& Hi-Z

\hline
\end{tabular}

Pin	Circuit format	When reset
EXTAL XTAL 2 pins		Oscillation
TEX TX 2 pins		Oscillation
$\overline{\mathrm{RST}}$ 1 pin		Low level

Absolute Maximum Ratings
(Vss = OV reference)

Item	Symbol	Rating	Unit	
Supply voltage	Vod	-0.3 to +7.0	V	
	AVss	-0.3 to +0.3	V	
Input voltagte	VIN	-0.3 to $+7.0^{* 1}$	V	
Output voltage	Vout	-0.3 to $+7.0^{* 1}$	V	
High level output current	IoH	-5	mA	Output (value per pin)
High level total output current	LloH	-50	mA	Total for all output pins
Low level output current	loL	15	mA	All pins excluding large current outputs (value per pin)
	loLc	20	mA	Large current outputs (value per pin) *2
Low level total output current	LloL	100	mA	Total for all output pins
Operating temperature	Topr	-10 to +75	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	
Allowable power dissipation	PD	600	mW	

${ }^{* 1}$ Vin and Vout must not exceed VDD +0.3 V .
*2 The large current output is for each pin of Port C (PC), Port F0 (PFO) to Port 3 (PF3).
Note) Usage exceeding absolute maximum ratings may permanently impair the LSI. Normal operation should be conducted under the recommended operating conditions. Exceeding these conditions may adversely affect the reliability of the LSI.

Item	Symbol	Min.	Max.	Unit	Remarks	
Supply voltage	Vdd	4.5	5.5	V	$\mathrm{fc}=16 \mathrm{MHz}$ or less	Guaranteed operation range for $1 / 2$ and $1 / 4$ frequency dividing clock.
		3.0	5.5	V	$\mathrm{fc}=12 \mathrm{MHz}$ or less	
		2.7	5.5	V	Guaranteed operation range for $1 / 16$ frequency dividing clock or SLEEP mode	
		2.7	5.5	V	Guaranteed operation range by TEX clock	
		2.5	5.5	V	Guaranteed data hold operation range during STOP	
HIgh level input voltage	VIH	0.7 VdD	VdD	V	*1, *5	
		0.8 VdD	VdD	V	*1, *6	
	VIHS	0.8VdD	Vdd	V	Hysteresis input*2	
	Vihex	Vdd - 0.4	VDD +0.3	V	EXTAL pin*3, *5 TEX pin*4, *5	
		VDD-0.2	VDD +0.2	V	EXTAL pin*3, *6 TEX pin*4, *6	
Low level input voltage	VIL	0	0.3 VdD	V	*1, *5	
		0	0.2 VdD	V	*1, *6	
	VILS	0	0.2 VdD	V	Hysteresis input*2	
	Vilex	-0.3	0.4	V	EXTAL pin*3, *5 TEX pin*4, *5	
		-0.3	0.2	V	EXTAL pin*3,*6 TEX pin*4, *6	
Operating temperature	Topr	-10	+75	${ }^{\circ} \mathrm{C}$		

*1 Normal input port (each pin of PA, PB4, PB7, PC, PF0 to PF4, PG, PH and PI7)
*2 Each pin of $\overline{\mathrm{RST}}, \mathrm{CINT}, \overline{\mathrm{CSO}}, \overline{\mathrm{SCKO}}, \overline{\mathrm{SCK}}, \overline{\mathrm{SCK}}, \mathrm{SIO}, \mathrm{SI} 1, \mathrm{SI} 2, \overline{\mathrm{ECO}}, \overline{\mathrm{EC} 1}, \mathrm{RMC}, \overline{\mathrm{NMI}}, \mathrm{RxD}, \mathrm{INT0}, \mathrm{INT} 1$, INT2, INT3 and INT4
*3 It is specified only when the external clock is input.
*4 It is specified only when the external event count clock is input.
${ }^{*} 5$ This case applies to the range of 4.5 to 5.5 V supply voltage (VDD).
*6 This case applies to the range of 3.0 to 5.5 V supply voltage (VDD).

Electrical Characteristics

DC Characteristics

Supply voltage (Vdd) 4.5 to 5.5 V
($\mathrm{Ta}=-10$ to $+75^{\circ} \mathrm{C}, \mathrm{Vss}=0 \mathrm{~V}$ reference $)$

Item	Symbol	Pins	Conditions	Min.	Typ.	Max.	Unit
High level output voltage	VOH	PA to PD, PE4, PE5, PF4, PF5, PF6, PG to PI	$\mathrm{VDD}=4.5 \mathrm{~V}, \mathrm{IOH}=-0.5 \mathrm{~mA}$	4.0			V
			$\mathrm{VDD}=4.5 \mathrm{~V}, \mathrm{IOH}=-1.2 \mathrm{~mA}$	3.5			V
Low level output voltage	Vol		$\mathrm{VDD}=4.5 \mathrm{~V}, \mathrm{loL}=1.8 \mathrm{~mA}$			0.4	V
			$\mathrm{VDD}=4.5 \mathrm{~V}, \mathrm{loL}=3.6 \mathrm{~mA}$			0.6	V
		PC, PF0 to PF3	$\mathrm{VDD}=4.5 \mathrm{~V}, \mathrm{loL}=12.0 \mathrm{~mA}$			1.5	V
		PF0 to PF3	$\mathrm{VDD}=4.5 \mathrm{~V}, \mathrm{loL}=3.0 \mathrm{~mA}$			0.4	V
		SDA0, SDA1)	$\mathrm{VDD}=4.5 \mathrm{~V}, \mathrm{loL}=4.0 \mathrm{~mA}$			0.6	V
Input current	ІІне	EXTAL	$\mathrm{V}_{\text {dD }}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=5.5 \mathrm{~V}$	0.5		40	$\mu \mathrm{A}$
	Ille		V DD $=5.5 \mathrm{~V}, \mathrm{~V}$ IL $=0.4 \mathrm{~V}$	-0.5		-40	$\mu \mathrm{A}$
	IIHT	TEX	V DD $=5.5 \mathrm{~V}, \mathrm{~V} \mathrm{IL}=5.5 \mathrm{~V}$	0.1		10	$\mu \mathrm{A}$
	Illt		$\mathrm{V} D \mathrm{LD}=5.5 \mathrm{~V}, \mathrm{~V} \mathrm{IL}=0.4 \mathrm{~V}$	-0.1		-10	$\mu \mathrm{A}$
	IILR	$\overline{\mathrm{RST}}{ }^{*}$	$\mathrm{V} \mathrm{DD}=5.5 \mathrm{~V}, \mathrm{~V} \mathrm{IL}=0.4 \mathrm{~V}$	-1.5		-400	$\mu \mathrm{A}$
	IIL	PA to PD*2, PG to $\mathrm{Pl}^{* 2}$				-45	$\mu \mathrm{A}$
	IIL		VDD $=4.5 \mathrm{~V}, \mathrm{VIL}=4.0 \mathrm{~V}$	-2.78			$\mu \mathrm{A}$
I/O lealage current	IIz	$\begin{aligned} & \mathrm{PA} \text { to } \mathrm{PD}^{* 2}, \\ & \frac{\mathrm{PG} \text { to } \mathrm{PI}^{* 2}}{\mathrm{RST}^{*}} \end{aligned}$	$\begin{aligned} & V d D=5.5 \mathrm{~V} \\ & V I=0,5.5 \mathrm{~V} \end{aligned}$			± 10	$\mu \mathrm{A}$
Open drain output leakage current (N -ch Tr off state)	ILOH	$\begin{aligned} & \text { PF0 to PF3 } \\ & \text { (SCLO, SCL1, } \\ & \text { SDA0, SDA1) } \end{aligned}$	$\begin{aligned} & \mathrm{VDD}=5.5 \mathrm{~V} \\ & \mathrm{VOH}=5.5 \mathrm{~V} \end{aligned}$			10	$\mu \mathrm{A}$
${ }^{2} \mathrm{C}$ bus switch connection impedance (Output Tr off state)	Rbs	$\begin{aligned} & \text { SCL0: SCL1 } \\ & \text { SDA0: SDA1 } \end{aligned}$	$\begin{aligned} & \text { VDD }=4.5 \mathrm{~V} \\ & \mathrm{VSCLO}=\mathrm{VSCL1}=2.25 \mathrm{~V} \\ & \mathrm{~V} \text { SDA0 }=\mathrm{V} \text { SDA1 }=2.25 \mathrm{~V} \end{aligned}$			120	Ω

Item	Symbol	Pins	Conditions	Min.	Typ.	Max.	Unit
Supply current*3	IdD1	Vdo	1/2 frequency dividing clock operation $\begin{aligned} & V_{D D}=5.5 \mathrm{~V}, 16 \mathrm{MHz} \text { crystal oscillation } \\ & \left(\mathrm{C}_{1}=\mathrm{C}_{2}=15 \mathrm{pF}\right) \end{aligned}$		31	50	mA
	IdD2		VDD $=3 \mathrm{~V}, 32 \mathrm{kHz}$ crystal oscillation; and termination of 16 MHz oscillation ($\mathrm{C}_{1}=\mathrm{C}_{2}=47 \mathrm{pF}$)		0.6	1.2	mA
			SLEEP mode				
	IDDS1		$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}, 16 \mathrm{MHz}$ crystal oscillation ($\mathrm{C}_{1}=\mathrm{C}_{2}=15 \mathrm{pF}$)		2.5	10	mA
	IDDS2		$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, 32 \mathrm{kHz}$ crystal oscillation; and termination of 16 MHz oscillation ($\mathrm{C}_{1}=\mathrm{C}_{2}=47 \mathrm{pF}$)		8	30	$\mu \mathrm{A}$
	IDDS3		STOP mode VDD $=5.5 \mathrm{~V}$, termination of 16 MHz and 32 kHz crystal oscillation			30	$\mu \mathrm{A}$
Input capacity	Cin	PA to PC, PE0 to PE5, PF to PI, EXTAL, TEX, RST	Clock 1MHz OV for all pins excluding measured pins		10	20	pF

*1 $\overline{\text { RST }}$ specifies the input current when pull-up resistance has been selected; leakage current when no resistance has been selected.
*2 PA to PD, and PG to PI specify the input current when pull-up resistance has been selected; leakage current when no resistance has been selected.
*3 When all pins are open.

Electrical Characteristics

DC Characteristics

Supply voltage (Vdd) 3.0 to 3.6 V
$\left(\mathrm{Ta}=-10\right.$ to $+75^{\circ} \mathrm{C}, \mathrm{Vss}=0 \mathrm{~V}$ reference $)$

Item	Symbol	Pins	Conditions	Min.	Typ.	Max.	Unit
High level output voltage	Vor	PA to PD, PE4, PE5, PF4, PF5, PF6	$\mathrm{V} \mathrm{DD}=3.0 \mathrm{~V}$, $\mathrm{IOH}=-0.15 \mathrm{~mA}$	2.7			V
			$\mathrm{VDD}=3.0 \mathrm{~V}, \mathrm{loH}=-0.5 \mathrm{~mA}$	2.3			V
Low level output voltage	Vol		$\mathrm{VDD}=3.0 \mathrm{~V}, \mathrm{loL}=1.2 \mathrm{~mA}$			0.3	V
			$\mathrm{VDD}=3.0 \mathrm{~V}$, IoL $=1.6 \mathrm{~mA}$			0.5	V
		PC, PF0 to PF3	$\mathrm{VDD}=3.0 \mathrm{~V}, \mathrm{loL}=5.0 \mathrm{~mA}$			1	V
		PF0 to PF3	$\mathrm{VDD}=3.0 \mathrm{~V}, \mathrm{loL}=2.0 \mathrm{~mA}$			0.3	V
		SDA0, SDA1)	$\mathrm{VDD}=3.0 \mathrm{~V}, \mathrm{loL}=2.5 \mathrm{~mA}$			0.5	V
Input current	IIHE	EXTAL	$\mathrm{V}_{\text {dD }}=3.6 \mathrm{~V}, \mathrm{~V}_{\text {IH }}=3.6 \mathrm{~V}$	0.3		20	$\mu \mathrm{A}$
	IILE		Vdd $=3.6 \mathrm{~V}, \mathrm{VIL}=0.3 \mathrm{~V}$	-0.3		-20	$\mu \mathrm{A}$
	ІІнт	TEX	$\mathrm{V} D \mathrm{LD}=3.6 \mathrm{~V}, \mathrm{VIL}=3.6 \mathrm{~V}$	0.1		10	$\mu \mathrm{A}$
	Illt		V DD $=3.6 \mathrm{~V}, \mathrm{~V}$ IL $=0.4 \mathrm{~V}$	-0.1		-10	$\mu \mathrm{A}$
	IILR	$\overline{\mathrm{RST}}^{* 1}$	V DD $=3.6 \mathrm{~V}, \mathrm{~V} \mathrm{IL}=0.3 \mathrm{~V}$	-0.9		-200	$\mu \mathrm{A}$
	IIL	PA to PD*2, PG to $\mathrm{PI}^{* 2}$				-20	$\mu \mathrm{A}$
	IL		VDD $=3.0 \mathrm{~V}, \mathrm{VIL}=2.7 \mathrm{~V}$	-1.0			$\mu \mathrm{A}$
I/O lealage current	IIz	$\begin{aligned} & \text { PA to } \mathrm{PD}^{* 2}, \\ & \frac{\mathrm{PG} \text { to } \mathrm{PI}^{* 2}}{\mathrm{RST}^{*}} \end{aligned}$	$\begin{aligned} & \mathrm{VDD}=3.6 \mathrm{~V} \\ & \mathrm{~V} \text { I }=0,3.6 \mathrm{~V} \end{aligned}$			± 10	$\mu \mathrm{A}$
Open drain output leakage current (N -ch Tr off state)	ILOH	PF0 to PF3 (SCL0, SCL1, SDA0, SDA1)	$\begin{aligned} & \mathrm{VdD}=3.6 \mathrm{~V} \\ & \mathrm{VOH}=3.6 \mathrm{~V} \end{aligned}$			10	$\mu \mathrm{A}$
${ }^{2}{ }^{2} \mathrm{C}$ bus switch connection impedance (Output Tr off state)	Rbs	$\begin{aligned} & \text { SCL0: SCL1 } \\ & \text { SDA0: SDA1 } \end{aligned}$	$\begin{aligned} & \mathrm{VDD}=3.0 \mathrm{~V} \\ & \mathrm{VSCLO}=\mathrm{VSCL1}=1.5 \mathrm{~V} \\ & \mathrm{~V} \text { SDA0 }=\mathrm{V} \text { SDA1 }=1.5 \mathrm{~V} \end{aligned}$			300	Ω

Item	Symbol	Pins	Conditions	Min.	Typ.	Max.	Unit
Supply current*3	IdD1	Vdo	1/2 frequency dividing clock operation $\begin{aligned} & \mathrm{VDD}_{\mathrm{DD}}=3.6 \mathrm{~V}, 12 \mathrm{MHz} \text { crystal oscillation } \\ & \left(\mathrm{C}_{1}=\mathrm{C}_{2}=15 \mathrm{pF}\right) \end{aligned}$		11	25	mA
	IDDS1		SLEEP mode $\begin{aligned} & \text { VDD }=3.6 \mathrm{~V}, 12 \mathrm{MHz} \text { crystal oscillation } \\ & \left(\mathrm{C}_{1}=\mathrm{C}_{2}=15 \mathrm{pF}\right) \end{aligned}$		0.5	2.5	mA
	IDDS3		STOP mode $\mathrm{V} D \mathrm{~F}=3.6 \mathrm{~V}$, termination of 16 MHz and 32 kHz crystal oscillation			20	$\mu \mathrm{A}$
Input capacity	Cin	PA to PC, PE0 to PE5, PF to PI, EXTAL, TEX, RST	Clock 1MHz OV for all pins excluding measured pins		10	20	pF

*1 $\overline{\mathrm{RST}}$ specifies the input current when pull-up resistance has been selected; leakage current when no resistance has been selected.
*2 PA to PD, and PG to PI specify the input current when pull-up resistance has been selected; leakage current when no resistance has been selected.
*3 When all pins are open.

AC Characteristics

(1) Clock timing

$\left(\mathrm{Ta}=-10\right.$ to $+75^{\circ} \mathrm{C}, \mathrm{VDD}=4.5$ to 5.5 V , Vss $=0 \mathrm{~V}$ reference $)$

Item	Symbol	Pin	Cond	ditions	Min.	Typ.	Max.	Unit
System clock frequency	fc	$\begin{aligned} & \text { XTAL } \\ & \text { EXTAL } \end{aligned}$	Fig. 1, Fig. $2{ }^{\text {VDD }=4.5 \text { to } 5.5 \mathrm{~V}}$		1		16	MHz
					1		12	
System clock input pulse width	$\begin{aligned} & \mathrm{txL} \\ & \mathrm{txH} \end{aligned}$	EXTAL	Fig. 1, Fig. 2	$\mathrm{VDD}=4.5$ to 5.5 V	28			ns
			External clock drive		37.5			
System clock input rise time, fall time	$\begin{aligned} & \text { tcR } \\ & \text { tcc } \end{aligned}$	EXTAL	Fig. 1, Fig. 2 External clock	drive			200	ns
Event count input clock pulse width	ten tel	$\overline{\overline{\mathrm{ECO}}}$	Fig. 3		4tsys*1			ns
Event count input clock rise time, fall time	$\begin{aligned} & \text { ter } \\ & \hline \text { ter } \end{aligned}$	$\overline{\overline{\mathrm{ECO}}}$	Fig. 3				20	ms
System clock frequency	fc	$\begin{aligned} & \text { TEX } \\ & \text { TX } \end{aligned}$	$V_{D D}=2.7$ to 5 Fig. 2 (32kHz condition)	5.5 V clock applied		32.768		kHz
Event count input clock input pulse width	$\begin{aligned} & \text { tTL } \\ & \text { tTH } \end{aligned}$	TEX	Fig. 3		10			$\mu \mathrm{s}$
Event count input clock rise time, fall time	$\begin{aligned} & \hline t_{T R} \\ & t_{T F} \end{aligned}$	TEX	Fig. 3				20	ms

*1 tsys indicates the three values below according to the upper two bits (CPU clock selection) of the control clock register (CLC: 00FEh).
tsys [ns] = 2000/fc (upper two bits = "00"), 4000/fc (upper two bits = "01"), 16000/fc (Upper two bits = " 11 ")
Fig. 1. Clock timing

Fig. 2. Clock applied conditions

Fig. 3. Event count clock timing

(2) Serial transfer (CHO)
($\mathrm{Ta}=-10$ to $+75^{\circ} \mathrm{C}, \mathrm{VdD}=4.5$ to 5.5 V , $\mathrm{Vss}=0 \mathrm{~V}$ reference)

Item	Symbol	Pin	Condition	Min.	Max.	Unit
$\overline{\mathrm{CS}} \downarrow \rightarrow \overline{\mathrm{SCK}}$ delay time	tocsk	$\overline{\text { SCKO }}$	Chip select transfer mode (SCK = output mode)		tsys + 200	ns
$\begin{aligned} & \hline \overline{\mathrm{CS} \uparrow \rightarrow \overline{\mathrm{SCK}}} \\ & \text { floating delay time } \end{aligned}$	tocskf	$\overline{\text { SCKO }}$	Chip select transfer mode ($\overline{\text { SCK }}=$ output mode)		tsys +200	ns
$\overline{\mathrm{CS}} \downarrow \rightarrow$ SO delay time	tocso	SO0	Chip select transfer mode		tsys + 200	ns
$\overline{\mathrm{CS}} \downarrow \rightarrow$ SO floating delay time	tocsof	SOO	Chip select transfer mode		tsys + 200	ns
$\overline{\overline{C S}}$ High level width	twhcs	$\overline{\text { CSO }}$	Chip select transfer mode	tsys + 200		ns
$\overline{\text { SCK }}$ cycle time	tкıу	$\overline{\text { SCKO }}$	Input mode	2 2tsys + 200		ns
			Output mode	16000/fc		ns
$\overline{\text { SCK }}$ High and Low level widths	$\begin{aligned} & \text { tкн } \\ & \text { tкL } \end{aligned}$	$\overline{\text { SCKO }}$	Input mode	tsys + 100		ns
			Output mode	8000/fc - 100		ns
SI input setup time (against SCK \uparrow)	tsık	SIO	$\overline{\text { SCK }}$ input mode	-tsys + 100		ns
			$\overline{\text { SCK }}$ output mode	200		ns
SI input hold time (against $\overline{\mathrm{SCK}} \uparrow$)	tks	SIO	$\overline{\text { SCK input mode }}$	2 2tsys +100		ns
			$\overline{\text { SCK }}$ output mode	100		ns
$\overline{\mathrm{SCK}} \downarrow \rightarrow$ SO delay time	tkso	SOO	SCK input mode		2tsys + 200	ns
			$\overline{\text { SCK }}$ output mode		100	ns

Note 1) tsys indicates three values according to the contents of the clock control register (CLC; 00FEн) upper 2 bits (CPU clock selection).
tsys [ns] = 2000/fc (upper 2 bits = "00"), 4000/fc (upper 2 bits = " 01 "), 16000/fc (upper 2 bits = " 11 ")
Note 2) $\overline{\mathrm{CS}}, \overline{\mathrm{SCK}}, \mathrm{SI}$ and SO represent $\overline{\mathrm{CSO}}, \overline{\mathrm{SCKO}}, \mathrm{SIO}$ and SOO, respectively.
Note 3) The load of $\overline{\text { SCK }}$ output mode and SO output delay time is $50 \mathrm{pF}+1 \mathrm{TTL}$.

Serial transfer (CHO)
($\mathrm{Ta}=-10$ to $+75^{\circ} \mathrm{C}, \mathrm{VdD}=3.0$ to 3.6 V , $\mathrm{Vss}=0 \mathrm{~V}$ reference)

Item	Symbol	Pin	Condition	Min.	Max.	Unit
$\overline{\mathrm{CS}} \downarrow \rightarrow \overline{\mathrm{SCK}}$ delay time	tocsk	$\overline{\text { SCKO }}$	Chip select transfer mode (SCK $=$ output mode)		tsys +250	ns
$\overline{\mathrm{CS}} \uparrow \rightarrow \overline{\mathrm{SCK}}$ floating delay time	tocskf	$\overline{\text { SCKO }}$	Chip select transfer mode (SCK = output mode)		tsys + 200	ns
$\overline{\mathrm{CS}} \downarrow \rightarrow$ SO delay time	tocso	SOO	Chip select transfer mode		tsys + 250	ns
$\overline{\mathrm{CS}} \downarrow \rightarrow$ SO floating delay time	tocsof	SOO	Chip select transfer mode		tsys + 200	ns
$\overline{\mathrm{CS}}$ High level width	twhcs	$\overline{\text { CSO }}$	Chip select transfer mode	tsys + 200		ns
$\overline{\text { SCK }}$ cycle time	tкıy	$\overline{\text { SCKO }}$	Input mode	2 2tsys + 200		ns
			Output mode	16000/fc		ns
$\overline{\text { SCK }}$ High and Low level widths	tkH tкL	$\overline{\text { SCKO }}$	Input mode	tsys + 100		ns
			Output mode	8000/fc - 150		ns
SI input setup time (against SCK \uparrow)	tsik	SIO	$\overline{\text { SCK }}$ input mode	-tsys + 100		ns
			$\overline{\text { SCK }}$ output mode	200		ns
SI input hold time (against SCK \uparrow)	tкsı	SIO	$\overline{\text { SCK }}$ input mode	2 2tsys + 100		ns
			$\overline{\text { SCK }}$ output mode	100		ns
$\overline{\mathrm{SCK}} \downarrow \rightarrow \mathrm{SO}$ delay time	tkso	SOO	SCK input mode		2tsys + 250	ns
			$\overline{\text { SCK }}$ output mode		125	ns

Note 1) tsys indicates three values according to the contents of the clock control register (CLC; 00FEн) upper 2 bits (CPU clock selection).
tsys [ns] = 2000/fc (upper 2 bits = "00"), 4000/fc (upper 2 bits = "01"), 16000/fc (upper 2 bits = " 11 ")
Note 2) $\overline{\mathrm{CS}}, \overline{\mathrm{SCK}}, \mathrm{SI}$ and SO represent $\overline{\mathrm{CSO}}, \overline{\mathrm{SCKO}}, \mathrm{SIO}$ and SOO, respectively.
Note 3) The load of $\overline{\text { SCK }}$ output mode and SO output delay time is 50 pF .

Fig. 4. Serial transfer CHO timing

Serial transfer (CH1, CH2)
($\mathrm{Ta}=-10$ to $+75^{\circ} \mathrm{C}, \mathrm{VDD}=4.5$ to $5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$ reference $)$

Item	Symbol	Pin	Condition	Min.	Max.	Unit
$\overline{\text { SCK }}$ cycle time	tkcy	$\frac{\overline{\text { SCK1 }}}{\text { SCK2 }}$	Input mode	2tsys + 200		ns
			Output mode	16000/fc		ns
$\overline{\text { SCK }}$ High and Low level widths	$\begin{aligned} & \mathrm{t}_{\mathrm{KH}} \\ & \mathrm{t}^{2} \end{aligned}$	$\frac{\overline{\text { SCK1 }}}{\text { SCK2 }}$	Input mode	tsys + 100		ns
			Output mode	8000/fc - 50		ns
SI input setup time (against $\overline{\mathrm{SCK}} \uparrow$)	tsik	$\begin{aligned} & \mathrm{SI} 1 \\ & \mathrm{SI} 2 \end{aligned}$	$\overline{\text { SCK }}$ input mode	100		ns
			$\overline{\text { SCK }}$ output mode	200		ns
SI input hold time (against $\overline{\mathrm{SCK}} \uparrow$)	tksı	$\begin{aligned} & \mathrm{SI} 1 \\ & \mathrm{SI} 2 \end{aligned}$	$\overline{\text { SCK }}$ input mode	tsys + 200		ns
			$\overline{\text { SCK }}$ output mode	100		ns
SCK $\downarrow \rightarrow$ SO delay time	tkso	$\begin{aligned} & \mathrm{SO} 1 \\ & \mathrm{SO} 2 \end{aligned}$	$\overline{\text { SCK }}$ input mode		tsys + 200	ns
			$\overline{\text { SCK }}$ output mode		100	ns

Note 1) tsys indicates three values according to the contents of the clock control register (CLC; 00FEH) upper 2 bits (CPU clock selection).
tsys [ns] = 2000/fc (Upper 2 bits = "00"), 4000/fc (Upper 2 bits = "01"), 16000/fc (Upper 2 bits = " 11 ")
Note 2) $\overline{\mathrm{SCK}}, \mathrm{SI}$ and SO represent $\overline{\mathrm{SCK}}$, SI1, and SO1, respectively for CH 1 ; they represent $\overline{\mathrm{SCK}}$, SI2 and SO2, respectively for CH 2 .
Note 3) The load of $\overline{\text { SCK1 }}$ and $\overline{\text { SCK2 }}$ output modes and SO1 and SO2 output delay times is $50 \mathrm{pF}+1$ TTL.

Serial transfer (CH1, CH2)
($\mathrm{Ta}=-10$ to $+75^{\circ} \mathrm{C}, \mathrm{VDD}=3.0$ to $3.6 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$ reference)

Item	Symbol	Pin	Condition	Min.	Max.	Unit
$\overline{\text { SCK }}$ cycle time	tkcy	$\overline{\overline{\text { SCK1 }}}$	Input mode	2 tsys + 200		ns
			Output mode	16000/fc		ns
$\overline{\text { SCK }}$ High and Low level widths	$\begin{aligned} & \mathrm{t}_{\mathrm{KH}} \\ & \mathrm{t}_{\mathrm{KL}} \end{aligned}$	$\begin{aligned} & \overline{\text { SCK1 }} \\ & \text { SCK2 } \end{aligned}$	Input mode	tsys + 100		ns
			Output mode	8000/fc - 150		ns
SI input setup time (against SCK \uparrow)	tsık	$\begin{aligned} & \text { SI1 } \\ & \text { SI2 } \end{aligned}$	$\overline{\text { SCK }}$ input mode	100		ns
			$\overline{\text { SCK }}$ output mode	200		ns
SI input hold time (against $\overline{\mathrm{SCK}} \uparrow$)	tksı	$\begin{aligned} & \text { SI1 } \\ & \text { SI2 } \end{aligned}$	$\overline{\text { SCK }}$ input mode	tsys + 200		ns
			SCK output mode	100		ns
SCK $\downarrow \rightarrow$ SO delay time	tkso	$\begin{aligned} & \text { SO1 } \\ & \text { SO2 } \end{aligned}$	$\overline{\text { SCK }}$ input mode		tsys + 250	ns
			$\overline{\text { SCK }}$ output mode		125	ns

Note 1) tsys indicates three values according to the contents of the clock control register (CLC; 00FEн) upper 2 bits (CPU clock selection).
tsys [ns] = 2000/fc (Upper 2 bits = "00"), 4000/fc (Upper 2 bits = "01"), 16000/fc (Upper 2 bits = "11")
Note 2) $\overline{\text { SCK, SI }}$ and SO represent $\overline{\text { SCK1 }}$, SI1, and SO1, respectively for CH 1 ; they represent $\overline{\text { SCK2 }}$, SI2 and SO 2 , respectively for CH 2 .
Note 3) The load of $\overline{\text { SCK1 }}$ and $\overline{\text { SCK2 }}$ output modes and SO1 and SO2 output delay times is 50 pF .

Fig. 5. Serial transfer CH1 and CH2 timing

(3) A/D converter characteristics
$\left(\mathrm{Ta}=-10\right.$ to $+75^{\circ} \mathrm{C}, \mathrm{VDD}=3.0$ to $5.5 \mathrm{~V}, \mathrm{AVREF}=2.7$ to $\mathrm{VDD}, \mathrm{Vss}=\mathrm{AVSS}=0 \mathrm{~V}$ reference $)$

Item	Symbol	Pin	Condition		Min.	Typ.	Max.	Unit
Resolution							8	Bits
Linearity errror			$\begin{aligned} & \mathrm{Ta}=25^{\circ} \mathrm{C} \\ & \mathrm{VDD}=\mathrm{AV} \mathrm{VEF}=5.0 \mathrm{~V} \\ & \mathrm{Vss}=\mathrm{AV} \text { SS }=0 \mathrm{~V} \end{aligned}$				± 3	LSB
Zero transition voltage	Vz7* ${ }^{*}$				-50	10	70	mV
Full-scale transition voltage	$\mathrm{VFT}^{*}{ }^{*}$				4910	4970	5030	mV
Linearity errror			$\begin{aligned} & \mathrm{Ta}=25^{\circ} \mathrm{C} \\ & \mathrm{VDD}=\mathrm{AV} \mathrm{REF}=3.3 \mathrm{~V} \\ & \mathrm{VsS}=\mathrm{AV} \text { SS }=0 \mathrm{~V} \end{aligned}$				± 5	LSB
Zero transition voltage	Vzt*1				-10	6.5	110	mV
Full-scale transition voltage	$\mathrm{VFT}^{*}{ }^{\text {2 }}$				4870	3280	5070	mV
Convertion time	tconv				160/fadc* ${ }^{\text {a }}$			$\mu \mathrm{s}$
Sampling time	tsamp				12/fadc*3			$\mu \mathrm{s}$
Reference input voltage	Vref	AVref	$\mathrm{VDD}=4.5$ to 5.5 V		VDd - 0.5		VDD	V
			$\mathrm{VDD}=3.0$ to 3.6 V		VDD - 0.3		Vdd	V
Analog input voltage	VIAN	AN0 to AN7			0		AVref	V
AVref current		AVref	Operation mode	$\mathrm{VDD}=5.5 \mathrm{~V}$		0.6	1.0	mA
	IREF			$\mathrm{VDD}=3.6 \mathrm{~V}$		0.4	0.7	mA
	Irefs		SLEEP mode STOP mode 32 kHz operation mode				10	$\mu \mathrm{A}$

Fig.6. Definition of A / D converter terms

*1 $^{\text {Vzt: Value }}$ at which the digital conversion value changes from 00 H to 01 H and vice versa.
*2 VFT: Value at which the digital conversion value changes from FE to FF and vice versa.
*3 fadc indicates the below values due to the contents of bit 6 (CKS) of the A/D control register (ADC: 00F9H) and bits 7 (PCK1) and 6 (PCKO) of the clock control register (CLC: 00FEн).

PCK1, PCKO	$0(\phi / 2$ selection $)$	$1(\phi$ selection $)$
$00\left(\phi=\mathrm{fEx}^{2} / 2\right)$	$\mathrm{f}_{\mathrm{ADC}}=\mathrm{fc} / 2$	$\mathrm{f}_{\mathrm{ADC}}=\mathrm{fc}$
$01(\phi=\mathrm{fEX} / 4)$	$\mathrm{f}_{\mathrm{ADC}}=\mathrm{fc} / 4$	$\mathrm{f}_{\mathrm{ADC}}=\mathrm{fc} / 2$
$11(\phi=\mathrm{fEx} / 16)$	$\mathrm{f}_{\mathrm{ADC}}=\mathrm{fc} / 16$	$\mathrm{f}_{\mathrm{ADC}}=\mathrm{fc} / 8$

(4) Interruption, reset input ($\mathrm{Ta}=-10$ to $+75^{\circ} \mathrm{C}, \mathrm{VDD}=3.0$ to 5.5 V , $\mathrm{Vss}=0 \mathrm{~V}$ reference)

Item	Symbol	Pin	Condition	Min.	Max.	Unit
External interruption HIgh, Low level width	$\begin{aligned} & \mathrm{t}_{\mathrm{tH}} \\ & \mathrm{t}_{\mathrm{LI}} \end{aligned}$	INTO INT1 INT2 INT3 INT4 $\overline{\mathrm{NMI}}$		1		$\mu \mathrm{s}$
Reset input Low level width	trsL	$\overline{\mathrm{RST}}$		32/fc		$\mu \mathrm{s}$

Fig. 7. Interruption input timing

Fig. 8. $\overline{\text { RST }}$ input timing

(5) $\mathrm{I}^{2} \mathrm{C}$ bus timing
($\mathrm{Ta}=-10$ to $+75^{\circ} \mathrm{C}, \mathrm{VDD}=4.5$ to $5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$ reference $)$

Item	Symbol	Pin	Condition	Min.	Max.	Unit
SCL clock frequency	fstc	SCL		0	100	kHz
Bus-free time before starting transfer	tbuf	SDA, SCL		4.7		$\mu \mathrm{S}$
Hold time for starting transfer	thD; STA	SDA, SCL		4.0		$\mu \mathrm{s}$
Clock Low level width	tıow	SCL		4.7		$\mu \mathrm{s}$
Clock High level width	thigh	SCL		4.0		$\mu \mathrm{s}$
Setup time for repetitive transfers	tsu; STA	SDA, SCL		4.7		$\mu \mathrm{s}$
Data bold time	thd; DAT	SDA, SCL		0*1		$\mu \mathrm{s}$
Data setup time	tsu; DAT	SDA, SCL		250		ns
SDA, SCL rise time	t_{R}	SDA, SCL			1	$\mu \mathrm{s}$
SDA, SCL fall time	t_{F}	SDA, SCL			300	ns
Setup time for transfer completion	tsu; sto	SDA, SCL		4.7		$\mu \mathrm{s}$

*1 The data hold time must exceed 300ns because the SCL rise time (300ns max.) is not taken into consideration.

Fig. 9. $I^{2} \mathrm{C}$ bus transfer timing

Fig. 10. Recommended circuit example for $\mathrm{I}^{2} \mathrm{C}$ device

- Pull-up resistors (Rp) must be connected to SDA0 (or SDA1) and SCL0 (or SCL1).
- Serial resistance (Rs $=300 \Omega$ or less) of SDA0 (or SDA1) and SCL0 (or SCL1) reduces spike noise caused by CRT flash-over.

Appendix

Fig. 11. SPC700 Series recommended oscillation circuit
(i)

(ii)

Manufacturer	Model	fc (MHz)	$\mathrm{C}_{1}(\mathrm{pF})$	$\mathrm{C}_{2}(\mathrm{pF})$	Rd (Ω)	Circuit example
RIVER ELETEC CO., LTD.	HC-49/U03	8.00	10	10	0	(i)
		10.00	5	5		
		12.00				
		16.00				
KINSEKI LTD.	HC-49/U (-S)	8.00	16 (12)	16 (12)	0	(i)
		10.00	16 (12)	16 (12)		
		12.00	12	12	0	
		16.00	12	12	0	
	P3	32.768 kHz	30	18	470k	(ii)

Mask option table

Option item	Mask	CXP846P48-1- $\square \square \square$
Package	80-pin plastic QFP	80-pin plastic QFP
ROM capacity	32K/40K/48K bytes	PROM 48K bytes
Reset pin pull-up resistance	Existent/Non-existent	Existent

Characteristics Curve

IDD vs. fc
$\left(\mathrm{VDD}=5.0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right.$, Typical)

Package Outline

80PIN QFP (PLASTIC)

DETAIL A

SONY CODE	QFP-80P-L01
EIAJ CODE	$*$ QFP080-P-1420-A
JEDEC CODE	

PACKAGE STRUCTURE

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER PLATING
LEAD MATERIAL	COPPER / 42 ALLOY
PACKAGE WEIGHT	1.6 g

[^0]: Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

