CMOS 8-bit Single-chip Microcomputer

Description

The CXP852P32A is highly integrated microcomputers composed of 8-bit CPU, PROM, RAM, and I/O ports. This IC featureS many other highperformance circuits in a single-chip CMOS design, including an A/D converter, serial interface, timer/counter, time base timer, vector interrupt, onscreen display function, $\mathrm{I}^{2} \mathrm{C}$ bus interface, PWM generator, remote control receiver, HSYNC counter, power supply frequency counter, and watchdog timer.
Also this IC provides power-on reset and sleep functions. The designers have ensured low power consumption for these powerful microcomputers.
The CXP852P32A is the on-chip PROM version of the CXP85232A with on-chip mask ROM, providing the function of being able to write directly into the program. Furthermore, because of the OSD character ROM can also be written directly into, it is suitable for evaluation use during system development and for small quantity production.

Structure

Silicon gate CMOS IC

Features

- A wide instruction set (213 instructions) to cover various types of data
- 16-bit arithmetic/multiplication and division/boolean bit operation instructions
- Minimum instruction cycle During operation $1 \mu \mathrm{~s}$ at 4 MHz
- Incorporated PROM capacity 32K bytes (For program)

3K bytes (for OSD)

- Incorporated RAM capacity
- Peripheral functions
- On-screen display function
- $I^{2} \mathrm{C}$ bus interface
- PWM output 14 bits, 1 channel

6 bits, 8 channels

- Remote control reception circuit
- A/D converter

8 -bit pulse measuring counter, 6 -stage FIFO
4 bits, 4 channels, successive approximation method
(Conversion time of $40 \mu \mathrm{~s}$ at 4 MHz)

- HSYNC counter
- Power supply frequency counter
- Watchdog timer
—Serial I/O 8-bit clock synchronization
- Timer 8-bit timer, 8-bit timer/counter, 19-bit time base timer
- Interruption

14 factors, 14 vectors, multi-interrupt possible
Sleep

- Standby mode

Purchase of Sony's ${ }^{2} \mathrm{C}$ components conveys a license under the Philips ${ }^{2} \mathrm{C}$ Patent Rights to use these components in an $I^{2} \mathrm{C}$ system, provided that the system conforms to the $\mathrm{I}^{2} \mathrm{C}$ Standard Specifications as defined by Philips.

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.
Block Diagram

Pin Assignment 1 (Top View) 64 pin SDIP Package

Note) 1. Vpp (Pin 63) is always connected to Vod.
2. Vss (Pins 32 and 62) are both connected to GND.
3. MP (Pin 61) is always connected to GND.

Pin Assignment 2 (Top View) 64 pin QFP Package

Note) 1. Vpp (Pin 56) is always connected to Vdd.
2. Vss (Pins 26 and 58) are both connected GND.
3. MP (Pin 55) is always connected to GND.

Pin Description

Symbol	1/O	Description	
PA0 to PA7	I/O	(Port A) 8-bit I/O port. I/O can be set in a unit of single bits. (8 pins)	
PB0 to PB7	I/O	(Port B) 8-bit I/O port. I/O can be set in a unit of single bits. (8 pins)	
PC0 to PC7	I/O	(Port C) 8 -bit I/O port. I/O can be set in a unit of single bits. (8 pins)	
PD0/INT2	I/O/Input	(Port D) 8-bit I/O port. I/O can be set in a unit of single bits. Capable of driving 12 mA sink current. (8 pins)	External interruption request input. Active at falling edge.
PD1/ $\overline{\text { SCK }}$	I/O///O		Serial clock I/O.
PD2/SO	I/O/Output		Serial data output.
PD3/SI	I/O/Input		Serial data input.
PD4/HSI	I/O/Input		HSYNC counter input.
PD5/ACI	I/O/Input		Input for power supply frequency counter.
PD6/RMC	I/O/Input		Input for remote control reception circuit.
PD7/EC	I/O/Input		External event input for timer/counter.
$\begin{aligned} & \text { PE0//NT0 } \\ & \text { PE1//INT1 } \end{aligned}$	Input/Input	(Port E) 8-bit port. Lower 6 bits are for inputs; upper 2 bits are for outputs. (8 pins)	External interruption request inputs. Active at falling edge. (2 pins)
$\begin{aligned} & \text { PE2/ANO } \\ & \text { to } \\ & \text { PE5/AN3 } \end{aligned}$	Input/Input		Analog inputs for A / D converter. (4 pins)
PE6/PWM	Output/Output		14-bit PWM output. (CMOS output)
PE7/TO	Output/Output		Rectangular waveform output for Timer 1. (Duty output 50\%)
PFO/PWMO to PF3/PWM3	Output/Output	(Port F) 8 -bit output port, operating as N -ch open drain output for high current (12mA). Lower 4 bits are for medium voltage drive outputs (12V), upper 4bits are for 5 V drive outputs. (8 pins)	6-bit PWM outputs. (8 pins)
PF4/PWM4/ SCLO PF5/PWM5/ SCL1	Output/Output/ I/O		Transfer clock I/Os for ${ }^{2} \mathrm{C}$ bus interface.
PF6/PWM6/ SDA0 PF7/PWM7/ SDA1	Output/Output/ I/O		Transfer data I/Os for ${ }^{12} \mathrm{C}$ data bus.
R, G, B, BLK	Output	4-bit outputs for CRT display.	
HSYNC	Input	Horizontal synchronizing signal input for CRT display.	
VSYNC	Input	Vertical synchronizing signal input for CRT display.	

Symbol	I/O	Description				
EXLC	Input	Clock oscillation I/Os for CRT display.				
Oscillation frequency is set using the external L and C.				XLC	Output	Input
:---	:---	:---		Crystai connectors for system clock oscillation. When the clock is		
:---						
supplied externally, input to EXTAL and leave XTAL open.						

Input/Output Circuit Formats for Pins

Pin	Circuit format	When reset
PA0 to PA7 PB0 to PB7 PC0 to PC7 $24 \text { pins }$		Hi-Z
PDo/inT2 PD3/SI PD4/HSI PD5/ACI PD6/RMC PD7/EC $6 \text { pins }$	Port D	Hi-Z
PD1/ $\overline{\text { SCK }}$ PD2/SO 2 pins	Port D	Hi-Z

Pin	Circuit format	When reset
$\begin{gathered} \text { BLK } \\ \text { R } \\ \text { G } \\ \text { B } \\ \\ 4 \text { pins } \end{gathered}$		Hi-Z
HSYNC VSYNC 2 pins		Hi-Z
$\begin{aligned} & \text { EXLC } \\ & \text { XLC } \\ & 2 \text { pins } \end{aligned}$		Oscillation terminated
EXTAL XTAL 2 pins		Oscillation
$\overline{\text { RST }}$ 1 pin		Low level
MP 1 pin		$\mathrm{Hi}-\mathrm{Z}$

Absolute Maximum Ratings
(Vss = 0V reference)

Item	Symbol	Rating	Unit	Remarks
Supply voltage	Vdd	-0.3 to +7.0	V	
	Vpp	-0.3 to +13.0	V	Incorporated PROM
Input voltage	VIn	-0.3 to $+7.0{ }^{* 1}$	V	
Output voltage	Vout	-0.3 to $+7.0 * 1$	V	
Medium voltage drive output voltage	Voutp	-0.3 to +15.0	V	Pins PF0 to PF3
High level output current	IOH	-5	mA	
High level total output current	\loh	-50	mA	Total for all output pins
Low level output current	lol	15	mA	Excludes high current outputs
	Iolc	20	mA	High current outputs*2
Low level total output current	Elol	130	mA	Total for all output pins
Operating temperature	Topr	-10 to +75	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	
Allowable power dissipation	Pd	1000	mW	SDIP
		600	mW	QFP

*1 VIN and Vout must not exceed VdD +0.3 V .
*2 The high current operation transistor are the N-ch transistors of the PD and PF0 to PF3 ports.
Note) Usage exceeding absolute maximum ratings may permanently impair the LSI. Normal operation should be conducted under the recommended operating conditions.

Exceeding these conditions may adversely affect the reliability of the LSI.

Recommended Operating Conditions
(Vss = OV reference)

Item	Symbol	Min.	Max.	Unit	Remarks
Supply voltage	Vdo	4.5	5.5	V	Guaranteed operation range
		3.5	5.5	V	Low-speed mode guaranteed operation range*1
		2.5	5.5	V	Guaranteed data hold range during stop
	Vpp	Vpp $=$	= VDD	V	*5
High level input voltage	VIH	0.7Vdd	Vdo	V	Includes ${ }^{2} \mathrm{C}$ Schmitt input*2
	VIHs	0.8Vdd	Vdo	V	CMOS Schmitt input*3
	VIHEX	VdD-0.4	VdD +0.3	V	EXTAL*4
Low level input voltage	VIL	0	0.3 Vdd	V	Includes ${ }^{2} \mathrm{C}$ Schmitt input*2
	Viss	0	0.2 Vdd	V	CMOS Schmitt input*3
	VILex	-0.3	0.4	V	EXTAL*4
Operating temperature	Topr	-10	+75	${ }^{\circ} \mathrm{C}$	

*1 Specifies only for $1 / 16$ frequency demultiplication mode and sleep mode.
*2 Value for each pin of normal input ports (PA, PB, PC, PE2 to PE5), PF4 to PF7, and MP.
${ }^{* 3}$ Value of the following pins: PD0//IT2, PD1/ $\overline{\mathrm{SCK}}, \mathrm{PD} 2, ~ \mathrm{PD} 3 / \mathrm{SI}, \mathrm{PD} 4 / \mathrm{HSI}, \mathrm{PD} 5 / \mathrm{ACI}, \mathrm{PD} 6 / \mathrm{RMC}, \mathrm{PD} 7 / \overline{\mathrm{EC}}$, PEO/INT0, PE1/INT1, HSYNC, VSYNC, $\overline{R S T}$.
*4 Specifies only during external clock input.
*5 Vpp and VDD should be set to the same voltage.

Electrical Characteristics

DC Characteristics

($\mathrm{Ta}=-10$ to $+75^{\circ} \mathrm{C}, \mathrm{Vss}=0 \mathrm{~V}$ reference $)$

Item	Symbol	Pins	Conditions	Min.	Typ.	Max.	Unit
High level output current	Vон	PA to PD, PE6, PE7, R, G, B, BLK	$\mathrm{V} D \mathrm{LD}=4.5 \mathrm{~V}, \mathrm{IOH}=-0.5 \mathrm{~mA}$	4.0			V
			$\mathrm{V} D \mathrm{DD}=4.5 \mathrm{~V}, \mathrm{IOH}=-1.2 \mathrm{~mA}$	3.5			V
Low level output current	Vol	PA to PD, PE6, PE7, R, G, B, BLK, PF0 to PF3, RST	$\mathrm{VDD}=4.5 \mathrm{~V}$, loL $=1.8 \mathrm{~mA}$			0.4	V
			$\mathrm{VDD}=4.5 \mathrm{~V}, \mathrm{loL}=3.6 \mathrm{~mA}$			0.6	V
		PD, PF0 to PF3	$\mathrm{V} \mathrm{DD}=4.5 \mathrm{~V}, \mathrm{loL}=12.0 \mathrm{~mA}$			1.5	V
		PF4 to PF7 (SCLO, SCL1, SDA0, SDA1)	$\mathrm{VDD}=4.5 \mathrm{~V}$, $\mathrm{IOL}=3.0 \mathrm{~mA}$			0.4	V
			$\mathrm{VDD}=4.5 \mathrm{~V}, \mathrm{loL}=4.0 \mathrm{~mA}$			0.6	V
Input current	IIhe	EXTAL	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=5.5 \mathrm{~V}$	0.5		40	$\mu \mathrm{A}$
	IIHL		$\mathrm{V}_{\text {dD }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=0.4 \mathrm{~V}$	-0.5		-40	$\mu \mathrm{A}$
	IILR	$\overline{\mathrm{RST}}$	Vdd $=5.5 \mathrm{~V}, \mathrm{VIL}=0.4 \mathrm{~V}$	-1.5		-400	$\mu \mathrm{A}$
I/O leakage current	IIz	PA to PE, HSYNC, VSYNC, R, G, B, BLK, MP	$\begin{aligned} & \mathrm{VDD}=5.5 \mathrm{~V} \\ & V_{I}=0,5.5 \mathrm{~V} \end{aligned}$			± 10	$\mu \mathrm{A}$
Open drain output leakage current (N -ch Tr in off state)	ILOH	PF0 to PF3	$\mathrm{V}_{\text {dD }}=5.5 \mathrm{~V}, \mathrm{VOH}=12.0 \mathrm{~V}$			50	$\mu \mathrm{A}$
		PF4 to PF7	V DD $=5.5 \mathrm{~V}, \mathrm{VoH}=5.5 \mathrm{~V}$			10	$\mu \mathrm{A}$
Impedance connected to $\mathrm{I}^{2} \mathrm{C}$ bus switch (output Tr in off state)	Rbs	$\begin{aligned} & \text { SCL0: SCL1 } \\ & \text { SDA0: SDA1 } \end{aligned}$	$\begin{aligned} & \mathrm{VDD}=4.5 \mathrm{~V} \\ & \mathrm{~V} \text { SCLO }=\mathrm{VSCL1}=2.25 \mathrm{~V} \\ & \mathrm{~V} \text { SDA0 }=\mathrm{VSDA1}=2.25 \mathrm{~V} \end{aligned}$			120	Ω
Power supply current	IdD	VDD* ${ }^{*}$	Operation mode*1 (1/2 frequency demultiplier clock) 4 MHz crystal oscillation ($\mathrm{C}_{1}=\mathrm{C}_{2}=22 \mathrm{pF}$) All outputs open		10	25	mA
	IDDSL		Sleep mode		0.7	3	mA
	IDDSt		Stop mode*4	-	-	-	$\mu \mathrm{A}$
Input capacity	CIn	Pins other than Vdd and Vss	Clock 1MHz OV for no-measured pins		10	20	pF

*1 Rating applies only if OSD oscillator is halted.
*2 This device does not enter in the stop mode.

AC Characteristics
(1) Clock timing
$\left(\mathrm{Ta}=-10\right.$ to $+75^{\circ} \mathrm{C}, \mathrm{VDD}=4.5$ to 5.5 V , Vss $=0 \mathrm{~V}$ reference $)$

Item	Symbol	Pins	Conditions	Min.	Max.	Unit
System clock frequency	fc	XTAL EXTAL	Fig. 1, Fig. 2	3.5	4.5	MHz
System clock input pulse width	txL, txH	EXTAL	Fig. 1, Fig. 2 External clock drive	100		ns
System clock input rise time, fall time	tcR, tcF	EXTAL	Fig. 1, Fig. 2 External clock drive	200	ns	
Event counter input clock pulse width	tEH, tEL	$\overline{\text { EC }}$	Fig. 3	tsys +50*1		ns
Event counter input clock rise time, fall time	teR, tEF	$\overline{\text { EC }}$	Fig. 3	20	ms	

*1 tsys indicates the three values below according to the upper two bits (CPU clock selection) of the clock control register (address: 00FEн).
tsys [ns] = 2000/fc (upper two bits = "00"), 4000/fc (upper two bits = "01"), 16000/fc (upper two bits = "11")

Fig. 1. Clock timing

Fig. 2. Clock applied condition

Fig. 3. Event count clock timing
(2) Serial transfer
$\left(\mathrm{Ta}=-10\right.$ to $+75^{\circ} \mathrm{C}, \mathrm{VdD}=4.5$ to $5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$ reference $)$

Item	Symbol	Pins	Conditions	Min.	Max.	Unit
SCK cycle time	tkcy	$\overline{\text { SCK }}$	Input mode	1000		ns
			Output mode	8000/fc		ns
$\overline{\text { SCK }}$ High and Low level widths	$\begin{aligned} & \mathrm{t} k \mathrm{KH} \\ & \mathrm{t}_{\mathrm{LL}} \end{aligned}$	$\overline{\text { SCK }}$	$\overline{\text { SCK }}$ input mode	400		ns
			$\overline{\text { SCK }}$ output mode	4000/fc - 50		ns
SI input setup time (for SCK \uparrow)	tsık	SI	$\overline{\text { SCK }}$ input mode	100		ns
			$\overline{\text { SCK }}$ output mode	200		ns
SI input hold time (for $\overline{\text { SCK } \uparrow \text {) }}$	tksı	SI	$\overline{\text { SCK }}$ input mode	200		ns
			$\overline{\text { SCK }}$ output mode	100		ns
$\overline{\text { SCK }} \downarrow \rightarrow$ SO delay time	tkso	SO	$\overline{\text { SCK }}$ input mode		200	ns
			$\overline{\text { SCK }}$ output mode		100	ns

Note) The load condition for the $\overline{\text { SCK }}$ output mode, SO output delay time is $50 \mathrm{pF}+1$ TTL.

Fig. 4. Serial transfer timing
(3) Interruption, reset input $\quad\left(\mathrm{Ta}=-10\right.$ to $+75^{\circ} \mathrm{C}, \mathrm{VDD}=4.5$ to 5.5 V , $\mathrm{Vss}=0 \mathrm{~V}$ reference)

Item	Symbol	Pins	Conditions	Min.	Max.	Unit
External interruption High and Low level widths	$\mathrm{t} I \mathrm{H}$ t_{LL}	$\overline{\mathrm{INT0}}$ to $\overline{\mathrm{INT2}}$		1		$\mu \mathrm{~s}$
Reset input Low level width	tRSL	$\overline{\mathrm{RST}}$		$8 / \mathrm{fc}$		$\mu \mathrm{s}$

Fig. 5. Interruption input timing

Fig. 6. $\overline{\mathrm{RST}}$ input timing

(4) Power-on reset

Power-on reset
$\left(\mathrm{Ta}=-10\right.$ to $+75^{\circ} \mathrm{C}, \mathrm{V} D=4.5$ to $5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$ reference $)$

Item	Symbol	Pins	Conditions	Min.	Max.	Unit
Power supply rise time	t_{R}	VDD	Power-on reset	0.05	50	ms
	Power supply cut-off time			Repetitive power-on reset	1	
mys						

VDD

The power supply should be raised smoothly.

Fig. 7. Power-on reset
(5) A/D converter characteristics
$\left(\mathrm{Ta}=-10\right.$ to $+75^{\circ} \mathrm{C}, \mathrm{V} D \mathrm{~d}=4.5$ to $5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$ reference $)$

Item	Symbol	Pin	Condition	Min.	Typ.	Max.	Unit
Resolution						4	Bits
Linearity error			$\begin{aligned} & \mathrm{Ta}=25^{\circ} \mathrm{C} \\ & \mathrm{VDD}=5.0 \mathrm{~V} \\ & \mathrm{Vss}=0 \mathrm{~V} \end{aligned}$			± 1	LSB
Zero transition voltage	Vzt* ${ }^{*}$			-10	160	320	mV
Full-scale transition voltage	$V_{\text {FT }}{ }^{* 2}$			4370	4530	4690	mV
Conversion time	tconv			160/fc			$\mu \mathrm{s}$
Sampling time	tsamp			12/fc			$\mu \mathrm{s}$
Analog input voltage	Vian	AN0 to AN3		0		VDD	V

*1 Vzt: Value at which the digital conversion value changes from 0 H to 1 H and vice versa.
*2 $V_{\text {FT: }}$ Value at which the digital conversion value changes from EH to FH and vice versa.

Fig. 8. Definition of A/D converter terms

Note) The 4-bit conversion specifies values based on the upper 5 bits of the A/D data register (ADD: Address 00 F 5 H), compensated into 4 -bit data. A program example is shown below:
(A/D converter program example)

MOV	A, ADD	$;$ ACC \leftarrow conversion data
LSR	A	$;$ Shift to the right (4 times)
LSR	A	$;$
LSR	A	$;$
LSR	A	$;$
ADC	A, \#00H	$;$ Addition with carry (data increment if AD3 $=1$)
CMP	A,\#10H	$;$
BNE	ADC_SKIP $;$	
MOV	A, \#OFH	$;$

ADC_SKIP:
(6) $I^{2} C$ bus timing
($\mathrm{Ta}=-10$ to $+75^{\circ} \mathrm{C}, \mathrm{VDD}=4.5$ to $5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$ reference $)$

Item	Symbol	Pins	Conditions	Min.	Max.	Unit
SCL clock frequency	fsLC	SCL		0	100	kHz
Bus free time prior to transfer start	tBuF	SDA, SCL		4.7		$\mu \mathrm{~s}$
Transfer start hold time	tHD; STA	SDA, SCL		4.0		$\mu \mathrm{~s}$
Clock Low level width	tLow	SCL		4.7		$\mu \mathrm{~s}$
Clock High level width	thigh	SCL		4.0		$\mu \mathrm{~s}$
Setup time during repetitive transfer	tsu; sTA	SDA, SCL		4.7		$\mu \mathrm{~s}$
Data hold time	thD; DAT	SDA, SCL		$0 * 1$		$\mu \mathrm{~s}$
Data setup time	tsu; DAT	SDA, SCL		250		ns
SDA, SCL rise time	tr	SDA, SCL			1	$\mu \mathrm{~s}$
SDA, SCL fall time	tF	SDA, SCL			300	ns
Transfer end setup time	$\mathrm{tsu} ;$ STO	SDA, SCL		4.7		$\mu \mathrm{~s}$

*1 The data hold time does not take into consideration SCL rise time (300ns max.). Ensure that the data hold time exceeds 300ns.

SDA

SCL

Fig. 9. $I^{2} \mathrm{C}$ bus transfer timing

Fig. 10. Recommended circuit example for $\mathrm{I}^{2} \mathrm{C}$ device

- Pull-up resistors must be connected to SDA0 (or SDA1) and SCL0 (or SCL1).
- Serial resistance (Rs $=300 \Omega$ and under) of SDA0 (or SDA1) and SCLO (or SCL1) reduces spike noise caused by CRT flashover.

(7) OSD (On-Screen Display) timing

| (Ta $=-10$ to $+75^{\circ} \mathrm{C}, \mathrm{VDD}=4.5$ to 5.5 V , Vss $=0 \mathrm{~V}$ reference) | | | | | | |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| Item | Symbol | Pins | Condition | Min. | Max. | Unit |
| OSD clock frequency | fosc | EXLC
 XLC | Fig. 12 | 4 | 13 | MHz |
| HSYNC pulse width | tHwD | HSYNC | Fig. 11 | 1.2 | | $\mu \mathrm{~s}$ |
| HSYNC after-edge
 rise time/fall time | thcG | HSYNC | Fig. 11 | | 200 | ns |
| VSYNC after-edge
 rise time/fall time | tvcG | VSYNC | Fig. 11 | | 1.0 | $\mu \mathrm{~s}$ |

HSYNC
when Bit 5 of OPOL register (01FBн) is set to " 0 "

VSYNC
when Bit 4 of OPOL register (01FBн) is set to "0"

Fig. 11. OSC timing

Fig. 12. LC oscillation circuit example

Supplement

(i)

(ii)

Fig. 13. Recommended Oscillation circuit

Manufacturer	Model	fc (MHz)	$\mathrm{C}_{1}(\mathrm{pF})$	$\mathrm{C}_{2}(\mathrm{pF})$	$\operatorname{Rd}(\Omega)$	Circuit example
MURATA MFG CO., LTD.	CSA4.00MG	4.00	30	30	0	(i)
	CSA4.19MG	4.19				
	CST4.00MGW*	4.00				(ii)
	CST4.19MGW*	4.19				
RIVER ELETEC CORPORATION	HC-49/U03	4.00	10	10	0	(i)
		4.19				
KINSEKI LTD.	HC-49/U (-S)	4.00	18	18	0	
		4.19				

* Indicates types with on-chip grounding capacitance (C_{1} and C_{2}).

Product List

Option item	Mask	CXP852P32AS-1- $\square \square \square$	CXP852P32AQ-1-■ロロ
Package	64-pin plastic SDIP/QFP	64-pin plastic SDIP	64-pin plastic QFP
PROM capacitance	12K/16K bytes (CXP85112B/85116B) 20K/24K/28K/32K bytes (CXP85220A/85224A /85228A/85232A)	PROM 32K bytes	PROM 32K bytes
Reset pin pull-up resistor	Existent/Non-existent	Existent	Existent
Power-on reset circuit	Existent/Non-existent	Existent	Existent
Font data	User specified	User specified (PROM)*1	User specified (PROM)* ${ }^{* 1}$

[^0]IDD vs. VDD
(fc $=4 \mathrm{MHz}, \mathrm{Ta}=25^{\circ} \mathrm{C}$, Typical)

IDD vs. VDD

Parameter Curve for OSD Oscillator L vs. C (Analytically calculated value)

Fig. 14. Characteristics curves

Unit: mm

64PIN SDIP (PLASTIC)

64PIN QFP(PLASTIC)

[^0]: *1 The font data for the one-time PROM version is operated in the same way as the program writing.

