CMOS 8-bit Single Chip Microcomputer

Description

The CXP88732/88740/88748 is a CMOS 8-bit microcomputer which consists of A/D converter, serial interface, timer/counter, time base timer, high precision timing pattern generation circuits, PWM output, VISS/ VASS circuit, 32 kHz timer/counter, remote control receiving circuit, VSYNC separator and the measurement circuit which measure signals of capstan FG amplifier and drum FG/PG amplifier and other servo systems, as well as basic configurations like 8 -bit CPU, ROM, RAM and I/O port. They are integrated into a single chip.
Also, CXP88732/88740/88748 provides sleep/stop function which enables to lower power consumption.

Structure

Silicon gate CMOS IC

Features

- A wide instruction set (213 instructions) which cover various types of data
- 16-bit arithmetic/multiplication and division/boolean bit operation instructions
- Minimum instruction cycle 250 ns at 16 MHz operation $122 \mu \mathrm{~s}$ at 32 kHz operation
- Incorporated ROM capacity 32K bytes (CXP88732) 40K bytes (CXP88740) 48K bytes (CXP88748) 1344 bytes (including PPG RAM)
- Incorporated RAM capacity
- Peripheral function
- A/D converter

8 bits, 14 channels, successive approximation system
(Conversion time of $20 \mu \mathrm{~s} / 16 \mathrm{MHz}$)

- Serial interface
— Timer
— High precision timing pattern generation
- PWM/DA gate output
- Analog signal input circuit
- CTL write/rewrite circuit
- Servo input control

Incorporated 8-bit, 8-stage FIFO for data
(Auto transfer for 1 to 8 bytes), 1 channel
8 -bit clock sync type, 1 channel
8-bit timer/counter, 2 channels
19-bit time base timer
32 kHz timer/counter
PPG 19 pins 32-stage programmable circuit
RTG 5 pins, 1 channel
5-bit, 8-satge FIFO (RECCTL control), 1channel
12 bits, 2 channels (Repetitive frequency $62.5 \mathrm{kHz} / 16 \mathrm{MHz}$)
DA gate pulse output, 13 bits, 2 channels
Capstan FG amplifier circuit
Drum FG amplifier circuit
Drum PG amplifier circuit
PBCTL amplifier circuit
Recording current control circuit
Capstan FG, Drum FG/PG, CTL input

- VSYNC separator
- FRC capture unit
- PWM output
- VISS/VASS circuit
-32 kHz timer/event counter
- Remote control reception circuit
- Tri-state output
- Pseudo HSYNC output function
- High speed head switching circuit
- Interruption
- Standby mode

Incorporated 26-bit and 8-stage FIFO
14-bit, 1 channel
Pulse duty auto detection circuit
32 kHz oscillation circuit, ultra-low speed instruction mode
8 -bit pulse measurement counter, 6-stage FIFO
PPG 1 pin, output 8 pins

20 factors, 15 vectors, multi-interruption possible

- Package SLEEP/STOP
100-pin plastic QFP
CXP88800 100-pin ceramic QFP
- Piggyback/evaluation chip

[^0]Pin Assignment (Top View)

Note) 1. NC (Pin 90) is always connected to Vod.
2. VDD (Pins 61 and 89) are both connected to VDD
3. Vss (Pins 41 and 88) are both connected to GND.
4. MP (Pin 39) must be connected to GND.

Pin Description

Symbol	I/O	Description		
PA0/PPOO /HGO	Output/Real-time output/Output	(Port A) 8 -bit output port. Data is gated with PPO contents by OR-gate and they are output. (8 pins)	Pseudo HSYNC output pin.	
$\begin{aligned} & \mathrm{PA} 1 / \mathrm{PPO} 1 \\ & \text { to } \\ & \mathrm{PA} / \mathrm{PPO} \end{aligned}$	Output/ Real-time output		Programmable pattern generator (PPG) output. Functions as high precision realtime pulse output port. (19 pins) PA0 can be tri-state controlled with PPG.	
$\begin{aligned} & \text { PB0/PPO8 } \\ & \text { to } \\ & \text { PB7/PPO15 } \end{aligned}$	Output/ Real-time output	(Port B) 8 -bit output port. Data is gated with PPO contents by OR-gate and they are output. Tri-state control is possible. (8 pins)		
$\begin{gathered} \mathrm{PC} 0 / \mathrm{PPO} 16 \\ \text { to } \\ \mathrm{PC} 2 / \mathrm{PPO} 18 \end{gathered}$	I/O/ Real-time output	(Port C) 8-bit I/O port. I/O can be set in a unit of single bits. Data is gated with PPO or RT contents by OR-gate and they are output. (8 pins)		
$\begin{gathered} \mathrm{PC} 3 / \mathrm{RTO} 3 \\ \text { to } \\ \text { PC7/RTO7 } \end{gathered}$	I/O/ Real-time output		Real-time pulse generator (RTG) output. Functions as high precision real-time pulse output port. (5 pins)	
$\begin{aligned} & \frac{\mathrm{PD} 0 / \overline{\mathrm{NT} 1} 1}{\mathrm{NMII}} \end{aligned}$	I/O/Input/Input	(Port D) 8-bit I/O port. I/O can be set in a unit of single bits. (8 pins)	Input pin to request external interruption and non-maskable interruption.	
PD1/RMC	I/O/Input		Remote control receiving circuit input pin.	
PD2/PWM	I/O/Output		14-bit PWM output pin.	
$\begin{aligned} & \text { PD3/TO } \\ & \text { DDO/ADJ } \\ & \text { SRVO } \end{aligned}$	I/O/Output/Output/ Output/Output		Timer/counter, CTL duty detector, 32 kHz oscillation adjustment and servo amplifier output pin.	
PD4/CS0	I/O/Input		Serial chip select (CHO) input pin.	
PD5/ $\overline{\text { SCK0 }}$	I/O/I/O		Serial clock (CHO) I/O pin.	
PD6/SO0	I/O/Output		Serial data (CH0) output pin.	
PD7/SI0	I/O/Input		Serial data (CHO) input pin.	
PE0/ $\overline{\text { SCK1 }}$	Output///O	(Port E) 8-bit port. Bits 2, 3, 4 and 5 are for inputs; bits 0, 1, 6 and 7 are for outputs. (8 pins)	Serial clock (CH1) I/O pin	
PE1/SO1	Output/Output		Serial data (CH 1) output pin	
PE2/SI1	Input/Input		Serial data (CH1) input pin	
PE3/SYNC	Input/Input		Composite sync signal input pin.	
PE4/EXIO	Input/Input		External input pin for FRC capture unit. (2 pins)	
PE5/EXI1	Input/Input			
PE6/PWM0/ DAA0	Output/Output		PWM output pin. (2 pins)	DA gate pulse output pin. (2 pins)
PE7/PWM1/ DAA1	Output/Output			

Description	1/0	Description		
ANO/ANOUT	Input/Output			Analog circuit internal waveform output pin.
AN1 to AN3	Input			Analog input pin for A/D converter. (14 pins)
$\begin{gathered} \text { PFO/AN4 } \\ \text { to } \\ \text { PF3/AN7 } \end{gathered}$	Input/Input	(Port F) Lower 4 bits are for inputs; upper 4 bits are for outputs. Lower 4 bits are standby release input pins. (8 pins)		
PF4/AN8 to PF7/AN11	Output/Input			
PGO/AN12 PG1/AN13	Input/Input	(Port G) 2-bit input port. (2 pins)		
PH0 to PH7	Output	(Port H) 8 -bit output port; N -ch open drain output of medium drive voltage (12V) and large current (12 mA). (8 pins)		
PIo/INTO/ ENV-DET	I/O/Input	(Port I) 8-bit I/O port. I/O can be set in a unit of single bits. Function as standby release input can be set in a unit of single bits. (8 pins)	Input pin to request external interruption. Active when falling edge.	Trigger pulse input pin for head switching.
$\frac{\mathrm{Pl} 1 / \overline{\mathrm{EC}} /}{\mathrm{INT} 2}$	I/O/Input/Input		External event input pin for timer/counter.	Input pin to request external interruption Active when falling edge.
PI2 to PI7	I/O			
CFG	Input	Capstan FG input pin.		
DFG	Input	Drum FG input pin.		
DPG	Input	Drum PG input pin.		
$\begin{aligned} & \text { RECCTL (+) } \\ & \text { RECCTL (-) } \end{aligned}$	I/O	RECCTL signal output pin. (2 pins)	PBCTL signal input pin. (2 pins)	
CTLCIN (+) CTLCIN (-)	Output	Connected to RECCTL (+) and RECCTL (-) with the internal switch for playback. (2 pins)		
CTLAMP (+) CTLAMP (-)	Input	Input PBCTL signal with capacitor coupled. (2 pins)		
CTLFAMPO	Output	PBCTL signal 1st amplifier output.		
CTLSAMPI	Input	PBCTL signal 2nd amplifier input.		
RECCAP	I/O	Capacitor connecting pin for the slope setting of the CTL writing trapezoidal wave.		
VREFOUT	Output	Capacitor connecting pin for the VREF level smoothing of DPG, DFG and CFG.		
CTLAG	Output	Capacitor connecting pin for the CTL and AGND smoothing.		
AMPVss		Analog signal input circuit GND pin.		
AMPVdo		Analog signal input circuit power supply pin.		

$\left.$| Symbol | I/O | |
| :--- | :--- | :--- |
| EXTAL | Input | Connecting pin of crystal oscillator for system clock. When supplying
 the external clock, input it to EXTAL pin and input the opposite phase
 clock to XTAL pin. |
| XTAL | Output | Input | | Connecting pin of crystal oscillator for 32kHz timer clock. When used |
| :--- |
| as event counter, input to TEX pin and leave TX pin open. |
| (In this time, feedback resistor is not removed.) | \right\rvert\,

Input/Output Circuit Formats for Pins

\begin{tabular}{|c|c|c|}
\hline Pin \& Circuit format \& When reset \\
\hline \begin{tabular}{l}
PA0/PPOO/ HGO \\
1 pin \\
PA1/PPO1 \\
1 pin
\end{tabular} \& Port A \& \(\mathrm{Hi}-\mathrm{Z}\)

Hi-Z

\hline | PA2/PPO2 |
| :--- |
| to PA7/PPO7 |
| 6 pins | \& Port A \& Hi-Z

\hline | PB0/PPO8 |
| :--- |
| to PB7/PPO15 |
| 8 pins | \& Port B \& Hi-Z

\hline
\end{tabular}

Pin	Circuit format	When reset
PD5/ $\overline{\text { SCK }}$ PD6/SO0 2 pins	Port D	Hi-Z
PE0//SCK1 1 pin	Port E	Hi-Z
PE1/SO1 1 pin	Port E	Hi-Z
PE2/SI1 PE3/SYNC PE4/EXIO PE5/EXI1 4 pins	Port E Note) For PE3/SYNC, CMOS schmitt input or TTL schmitt input can be selected with the mask oprion.	Hi-Z

Pin	Circuit format	When reset
PE6/PWM0/ DAAO PE7/PWM1/ DAA1 2 pins	Port E	High level
ANo/ANOUT 1 pin	Port E	Hi-Z
AN1 to AN3 3 pin	Input mutiplexer	Hi-Z
PFO/AN4 to PF3/AN7 4 pins	Port F	Hi-Z
PF4/AN8 to PF7/AN11 4 pins	Port F	Hi-Z

Pin	Circuit format	When reset
CTLAMP (+) CTLAMP (-) CTLFAMPO 3 pins		1/2AMPVDd
CTLSAMPI 1 pin		1/2AMPVdd
CFG DFG DPG 3 pins		1/2AMPVdd
CTLAG VREFOUT 2 pins		1/2AMPVdd

Pin	Circuit format	When reset
RECCTL (+) 1 pin		Hi-Z
RECCTL (-) 1 pin		Hi-Z
CTLCIN (+) $1 \text { pin }$		Hi-Z
CTLCIN (-) 1 pin		Hi-Z
RECCAP 1 pin		Low level

Pin	Circuit format	When reset
EXTAL XTAL 2 pins		Oscillation
TEX TX 2 pins		Oscillation
$\overline{\mathrm{RST}}$ 1 pin		Low level

Absolute Maximum Ratings
（Vss＝OV reference）

Item	Symbol	Rating	Unit	Remarks
Supply voltage	Vdd	-0.3 to +7.0	V	
	AVdD	AVss to +7.0 ＊ 1	V	
	AVss	-0.3 to +0.3	V	
	AMPVdo	AMPVss to +7.0 ＊2	V	
	AMPVss	-0.3 to＋0．3	V	
Input voltage	VIN	-0.3 to＋7．0＊${ }^{\text {a }}$	V	
Output voltage	Vout	-0.3 to +7.0 ＊	V	
Medium drive output voltage	Voutp	－0．3 to＋15．0	V	Port H
High level output current	Іон	－5	mA	
High level total output current	Г⿺夂卜	－50	mA	Total of output pins
Low level output current	IoL	15	mA	Other than large current output ports（value per pin）
	Iolc	20	mA	Large current output port＊4 （value per pin）
Low level total output current	EloL	130	mA	Total of output pins
Operating temperature	Topr	-20 to＋75	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to＋150	${ }^{\circ} \mathrm{C}$	
Allowable power dissipation	PD	600	mW	QFP package type

＊1）AVDd and Vdd must not exceed +0.3 V ．
＊2） $\mathrm{AMPV} \operatorname{VD}$ and V DD must not exceed +0.3 V ．
＊3）Vin and Vout must not exceed Vdd +0.3 V ．
＊4）The large current output port is port H （PH）．
Note）Usage exceeding absolute maximum ratings may permanently impair the LSI．Normal operation should better take place under the recommended operating conditions．Exceeding those conditions may adversely affect the reliability of the LSI．

Recommended Operating Conditions
(Vss = 0V)

Item	Symbol	Min.	Max.	Unit	Remarks
Supply voltage	VDd	4.5	5.5	V	Guaranteed operation range for $1 / 2$ and $1 / 4$ frequency dividing clock
		3.5	5.5		Guaranteed operation range for $1 / 16$ frequency dividing clock or during SLEEP mode
		2.7	5.5		Guaranteed operation range by TEX clock
		2.5	5.5		Guaranteed data hold operation range during STOP
Analog power supply	AVdd	4.5	5.5	V	$*_{1}$
	AMPVdD	4.5	5.5	V	*2
High level input voltage	VIH	0.7 Vdd	VdD	V	*3
	Vihs	0.8 VdD	VdD	V	CMOS schmitt input *4
	VIHTS	2.2	Vdd	V	TTL schmitt input *5
	Vihex	Vdd - 0.4	Vdd +0.3	V	EXTAL pin*6 TEX pin*7
Low level input voltage	VIL	0	0.3 Vdd	V	*3
	VILS	0	0.2Vdd	V	CMOS schmitt input *4
	Vilts	0	0.8	V	TTL schmitt input *5
	Vilex	-0.3	0.4	V	EXTAL pin *6 TEX pin *7
Operating temperature	Topr	-20	+75	${ }^{\circ} \mathrm{C}$	

*1) AVDD and VDD should be set to the same voltage.
*2) AMPVdd and Vdd should be set to the same voltage.
*3) Normal input port (each pin of PC, PD2, PD3, PD6, PF0 to PF3, PG and PI2 to PI7), MP pin
*4) Each pin of RST, PD0/INT1/NMI, PD1/RMC, PD4/CS0, PD5/SCK0, PD7/SI0, PE0/SCK1, PE2/SI1, PE3/SYNC, PE4/EXIO, PE5/EXI1, PIO/INT0, PI1/EC $/ \overline{\mathrm{INT}}$ (For PE3/SYNC, when CMOS schmitt input is selected with mask option.)
*5) PE3/SYNC (when TTL schmitt input is selected with mask option.)
*6) Specifies only during external clock input.
*7) Specifies only during external event input.

Electrical Characteristics

DC Characteristics (VDD $=4.5$ to 5.5 V)
($\mathrm{Ta}=-20$ to $+75^{\circ} \mathrm{C}, \mathrm{Vss}=0 \mathrm{~V}$ reference)

Item	Symbol	Pins	Conditions	Min.	Typ.	Max.	Unit
High level output voltage	Vor	PA to PD, PE0 to PE1, PE6 to PE7, PF4 to PF7, PH (Vol only) PI	$\mathrm{VDD}=4.5 \mathrm{~V}, \mathrm{loH}=-0.5 \mathrm{~mA}$	4.0			V
			$\mathrm{VDD}=4.5 \mathrm{~V}, \mathrm{IOH}=-1.2 \mathrm{~mA}$	3.5			V
Low level output voltage	Vol		$\mathrm{VDD}=4.5 \mathrm{~V}, \mathrm{loL}=1.8 \mathrm{~mA}$			0.4	V
			$\mathrm{VDD}=4.5 \mathrm{~V}, \mathrm{loL}=3.6 \mathrm{~mA}$			0.6	V
		PH	$\mathrm{VDD}=4.5 \mathrm{~V}, \mathrm{loL}=12.0 \mathrm{~mA}$			1.5	V
Input current	IIHE	EXTAL	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=5.5 \mathrm{~V}$	0.5		40	$\mu \mathrm{A}$
	IILE		$\mathrm{V}_{\text {DD }}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=0.4 \mathrm{~V}$	-0.5		-40	$\mu \mathrm{A}$
	IIHT	TEX	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=5.5 \mathrm{~V}$	0.1		10	$\mu \mathrm{A}$
	IILT		$\begin{aligned} & \mathrm{VDD}=5.5 \mathrm{~V}, \\ & \mathrm{VIL}=0.4 \mathrm{~V} \end{aligned}$	-0.1		-10	$\mu \mathrm{A}$
	IILR	$\overline{\mathrm{RST}}^{*}{ }_{1}$		-1.5		-400	$\mu \mathrm{A}$
I/O leakage current	IIz	PA to PG, PI, MP, AN0 to AN3, RST $^{*}{ }_{1}$	$\begin{aligned} & V d D=5.5 \mathrm{~V} \\ & V_{I}=0,5.5 \mathrm{~V} \end{aligned}$			± 10	$\mu \mathrm{A}$
Open drain output leakage current ($\mathrm{N}-\mathrm{CH}$ Tr off state)	ILOH	PH	$\begin{aligned} & \mathrm{VDD}=5.5 \mathrm{~V} \\ & \mathrm{VOH}=12 \mathrm{~V} \end{aligned}$			50	$\mu \mathrm{A}$
Supply current*2	IDD1	Vdd, Vss	16MHz crystal oscillation ($\mathrm{C}_{1}=\mathrm{C}_{2}=15 \mathrm{pF}$) $V D D=5.5 V^{* 3}$		35	45	mA
	IDDS1		SLEEP mode $V D D=5.5 \mathrm{~V}$		2.0	8	mA
	IdD2		32 kHz crystal oscillation ($\mathrm{C}_{1}=\mathrm{C}_{2}=47 \mathrm{pF}$) $V_{D D}=3.3 \mathrm{~V}$		50	100	$\mu \mathrm{A}$
	IDDS2		SLEEP mode $V D D=3 V \pm 0.3 \mathrm{~V}$		9	35	$\mu \mathrm{A}$
	IDDS3		STOP mode (EXTAL and TEX pins oscillation stop) $V D D=5 \mathrm{~V} \pm 0.5 \mathrm{~V}$			10	$\mu \mathrm{A}$
Input capacity	Cin	PC, PD, PEO, PE2 to PE5 PF, PG, PI, RECCTL (+), RECCTL (-), CTLAMP (+), CTLAMP (-), CTLSAMPI, CFG, DFG, DPG, EXTAL, TEX	Clock 1 MHz OV other than the measured pins		10	20	pF

*1) RST pin specifies the input current when the pull-up resistor is selected, and specifies leakage current when no resistor is selected.
*2) When entire output pins are open.
*3) When setting upper 2 bits (CPU clock selection) of clock control register (CLC: 00FEн) to "00" and operating in high speed mode ($1 / 2$ frequency dividing clock).

AC Characteristics
(1) Clock timing
($\mathrm{Ta}=-20$ to $+75^{\circ} \mathrm{C}, \mathrm{VDD}=4.5$ to $5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$ reference)

Item	Symbol	Pin	Condition	Min.	Typ.	Max.	Unit
System clock frequency	fc	XTAL EXTAL	Fig. 1, Fig. 2	1		16	MHz
System clock input pulse width	txL, txH	XTAL EXTAL	Fig. 1, Fig. 2 External clock drive	28			ns
System clock input rise and fall times	tcR, tcF	XTAL EXTAL	Fig. 1, Fig. 2 External clock drive			200	ns
Event count clock input pulse width	teH, tEL	$\overline{\text { EC }}$	Fig. 3	tsys + 200*1			

*1) tsys indicates three values according to the contents of the clock control register (CLC; 00FEн) upper 2 bits (CPU clock selection).
tsys [ns] = 2000/fc (Upper 2 bits = "00"), 4000/fc (Upper 2 bits = "01"), 16000/fc (Upper 2 bits = "11")
Fig. 1. Clock timing

Fig. 2. Clock applied condition

Fig. 3. Event count clock timing

(2) Serial transfer (CHO)
$\left(\mathrm{Ta}=-20\right.$ to $+75^{\circ} \mathrm{C}, \mathrm{VDD}=4.5$ to $5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$ reference $)$

Item	Symbol	Pin	Condition	Min.	Max.	Unit
$\overline{\overline{\mathrm{CSO}} \downarrow \rightarrow \overline{\mathrm{SCKO}}}$ delay time	tocsk	$\overline{\text { SCKO }}$	Chip select transfer mode ($\overline{\text { SCKO }}=$ output mode)		tsys +200	ns
$\overline{\text { CSO }} \uparrow \rightarrow \overline{\text { SCKO }}$ floating delay time	tocskF	$\overline{\text { SCKO }}$	Chip select transfer mode ($\overline{\text { SCKO }}=$ output mode)		tsys + 200	ns
$\begin{aligned} & \overline{\text { CSO }} \downarrow \rightarrow \text { SOO } \\ & \text { delay time } \end{aligned}$	tocso	SOO	Chip select transfer mode		tsys + 200	ns
$\overline{\mathrm{CSO}} \uparrow \rightarrow \mathrm{SOO}$ floating delay time	tocsof	SOO	Chip select transfer mode		tsys + 200	ns
$\overline{\mathrm{CSO}}$ high level width	twhcs	$\overline{\text { CSO }}$	Chip select transfer mode	tsys + 200		ns
SCKO cycle time	tkcy	$\overline{\text { SCKO }}$	Input mode	2tsys + 200		ns
			Output mode	16000/fc		ns
SCKO high and low level widths	$\begin{aligned} & \mathrm{t}_{\mathrm{KH}} \\ & \mathrm{t} ⿵ 冂^{\prime} \end{aligned}$	$\overline{\text { SCKO }}$	Input mode	tsys + 100		ns
			Output mode	8000/fc - 50		ns
SIO input set-up time (against SCKO \uparrow)	tsik	SIO	$\overline{\text { SCK0 }}$ input mode	100		ns
			$\overline{\text { SCKO }}$ output mode	200		ns
SIO input hold time (against $\overline{\text { SCKO } \uparrow \text {) }}$	tksı	SIO	$\overline{\text { SCKO }}$ input mode	tsys + 200		ns
			$\overline{\text { SCKO }}$ output mode	100		ns
$\overline{\text { SCKO }} \downarrow \rightarrow$ SO0 delay time	tkso	SOO	SCK0 input mode		tsys + 200	ns
			$\overline{\text { SCKO }}$ output mode		100	ns

Note 1) tsys indicates three values according to the contents of the clock control register (CLC; 00FEн) upper 2 bits (CPU clock selection).
tsys [ns] = 2000/fc (Upper 2 bits = "00"), 4000/fc (Upper 2 bits = "01"), 16000/fc (Upper 2 bits = "11")
Note 2) The load of $\overline{\text { SCKO }}$ output mode and SOO output delay time is $50 \mathrm{pF}+1 \mathrm{TTL}$.

Fig. 4. Serial transfer timing (CHO)

Serial transfer (CH1)
$\left(\mathrm{Ta}=-20\right.$ to $+75^{\circ} \mathrm{C}, \mathrm{VdD}=4.5$ to $5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}$ reference)

Item	Symbol	Pin	Condition	Min.	Max.	Unit
$\overline{\text { SCK1 }}$ cycle time	tkcy	$\overline{\text { SCK1 }}$	Input mode	1000		ns
			Output mode	16000/fc		ns
SCK1 high and low level widths	$t_{\kappa \mathrm{H}}$tKL	$\overline{\text { SCK1 }}$	Input mode	400		ns
			Output mode	8000/fc - 50		ns
SI1 input set-up time (against SCK1 \uparrow)	tsık	SI1	$\overline{\text { SCK1 }}$ input mode	100		ns
			$\overline{\text { SCK1 }}$ output mode	200		ns
SI1 input hold time (against $\overline{\text { SCK } 1} \uparrow$)	tksı	SI1	$\overline{\text { SCK1 }}$ input mode	200		ns
			$\overline{\text { SCK1 }}$ output mode	100		ns
$\overline{\text { SCK1 }} \downarrow \rightarrow$ SO1 delay time	tkso	SO1	SCK1 input mode		200	ns
			SCK1 output mode		100	ns

Note) The load of SCK1 output mode and SO1 output delay time is $50 \mathrm{pF}+1 \mathrm{TTL}$.

Fig. 5. Serial transfer timing (CH1)

(3) A/D converter characteristics

$\left(\mathrm{Ta}=-20\right.$ to $+75^{\circ} \mathrm{C}, \mathrm{VDD}=\mathrm{AVDD}=4.5$ to $5.5 \mathrm{~V}, \mathrm{AVREF}=4.0$ to $\mathrm{AVDD}, \mathrm{Vss}=\mathrm{AVss}=0 \mathrm{~V}$ reference $)$

Item	Symbol	Pin	Condition	Min.	Typ.	Max.	Unit
Resolution						8	Bits
Linearity error			$\begin{aligned} & \mathrm{Ta}=25^{\circ} \mathrm{C} \\ & \mathrm{VDD}=\mathrm{AVDD}=\mathrm{AV} \text { REF }=5.0 \mathrm{~V} \\ & \mathrm{VDD}=\mathrm{AVSS}=0 \mathrm{~V} \end{aligned}$			± 1	LSB
Absolute error						± 2	LSB
Conversion time	tconv			160/fadc ${ }^{*} 1$			$\mu \mathrm{S}$
Sampling time	tsamp			12/fadc ${ }^{*} 1$			$\mu \mathrm{s}$
Reference input voltage	Vref	AVref		AVDD - 0.5		AVDD	V
Analog input voltage	VIan	AN0 to AN7		0		AVref	V
AVref current	Iref	AVref	Operation mode		0.6	1.0	mA
			SLEEP mode STOP mode 32 kHz operation mode			10	$\mu \mathrm{A}$

Fig. 6. Definitions of A/D converter terms

*1) fadc indicates the below values due to the contents of bit 0 (ADCCK) of the ADC operation clock selection register (MSC: 01FFH), bits 7 (PCK1) and 6 (PCK0) of the clock control register (address: 00FEн).

\qquad	0 ($\phi / 2$ selection)	1 (ϕ selection)
00 (ϕ = fex/2)	$\mathrm{f}_{\mathrm{ADC}}=\mathrm{fc} / 2$	$f_{A D C}=\mathrm{fc}$
01 (ϕ = fex/4)	$\mathrm{f}_{\mathrm{ADC}}=\mathrm{fc} / 4$	$\mathrm{f}_{\mathrm{ADC}}=\mathrm{fc} / 2$
11 (ϕ = fex/16)	$\mathrm{f}_{\text {ADC }}=\mathrm{fc} / 16$	$\mathrm{f}_{\mathrm{ADC}}=\mathrm{fc} / 8$

(4) Interruption, reset input ($\mathrm{Ta}=-20$ to $+75^{\circ} \mathrm{C}, \mathrm{VDD}=4.5$ to 5.5 V , $\mathrm{Vss}=0 \mathrm{~V}$ reference)

Item	Symbol	Pin	Condition	Min.	Max.	Unit
External interruption high and low level widths	$t_{I H}$	$\frac{\overline{\mathrm{INTO}}}{\overline{I N T 1}}$				
Reset input low level width	$\mathrm{t}_{\mathrm{RSL}}$	$\overline{\frac{\mathrm{RST}}{\mathrm{INT2}}}$		1		$\mu \mathrm{~s}$
NMI			$32 / \mathrm{fc}$		$\mu \mathrm{s}$	

Fig. 7. Interruption input timing

Fig. 8. Reset input timing

$\overline{\mathrm{RST}}$

Analog Circuit Characteristics

(1) Amplifier circuit reference voltage characteristics

Item	Symbol	Pin	Conditions	Min.	Typ.	Max.	Unit
Reference level output voltage	Vor	VREFOUT		2.2	2.4	2.6	V
		CTLAG		2.15	2.35	2.55	V
Reference level output current	Ior	VREFOUT	VREFOUT = VREFOUT + 0.5V	3.50	6.5		mA
			VREFOUT = VREFOUT - 0.5V	-0.30	-0.85		mA
		CTLAG	CTLAG $=$ CTLAG +0.5 V	2.80	5.5		mA
			CTLAG $=$ CTLAG -0.5 V	-0.30	-0.85		mA

(2) CTL 1st amplifier characteristics

$\left(\mathrm{Ta}=-20\right.$ to $+75^{\circ} \mathrm{C}, \mathrm{VDD}=\mathrm{AMPV} \mathrm{DD}=5.0 \mathrm{~V}, \mathrm{Vss}=\mathrm{AMPV} \mathrm{Vs}=0 \mathrm{~V}, \mathrm{CTLAG}$ reference $)$

Item	Symbol	Pin	Conditions	Min.	Typ.	Max.	Unit
Voltage gain *1	Avctlı	RECCTL (+) CTLFAMPO*2	$\begin{aligned} & \text { Gain }=16 \mathrm{~dB} \\ & \text { RECCTL }(-)=0 \mathrm{~V} \end{aligned}$	12.5	14.5	16.5	dB
			$\begin{aligned} & \text { Gain }=27 \mathrm{~dB} \\ & \text { RECCTL }(-)=0 \mathrm{~V} \end{aligned}$	23.5	25.5	27.5	dB
			$\begin{aligned} & \text { Gain }=42 \mathrm{~dB} \\ & \text { RECCTL }(-)=0 \mathrm{~V} \end{aligned}$	39.0	41.5	44.0	dB
			$\begin{aligned} & \text { Gain }=58 \mathrm{~dB} \\ & \text { RECCTL }(-)=0 \mathrm{~V} \end{aligned}$	54.5	57.0	59.5	dB
Offset voltage	Vosctli		$\begin{aligned} & \text { CTLAMP }(+) \text { and CTLAMP (-) } \\ & =\text { open } \end{aligned}$	-40	0	+40	mV
Input resistance	Rinctli	CTLAMP (+)	Charge switch OFF CTLAMP (+) = +0.2V	26.0	44.5		$\mathrm{k} \Omega$
		CTLAMP (-)	Charge switch OFF CTLAMP $(-)=+0.2 \mathrm{~V}$	1.20	2.0		$\mathrm{k} \Omega$
Charge switch ON resistance	Rcctlı	CTLAMP (+)	Charge switch ON CTLAMP (+) $=+0.5 \mathrm{~V}$		560	1010	Ω
		CTLAMP (-)	Charge switch ON CTLAMP $(-)=+0.5 \mathrm{~V}$		560	1010	Ω
RECCTL and CTLCIN connection switch ON resistance	Rread	$\begin{aligned} & \text { RECCTL (+) } \\ & \text { CTLCIN (+) } \end{aligned}$	During CTL read operation, CTLCIN (+) - RECCTL (+) $=0.2 \mathrm{~V}$	315	400	770	Ω
		$\begin{aligned} & \text { RECCTL (-) } \\ & \text { CTLCIN (-) } \end{aligned}$	During CTL read operation, CTLCIN (-) - RECCTL $(-)=0.2 \mathrm{~V}$	315	400	770	Ω
CTLCIN OV fix switch ON resistance	Rwrite	CTLCIN (+)	During CTL write operation, CTLCIN (+) = AMPVss +0.2 V		250	310	Ω
		CTLCIN (-)	During CTL write operation, CTLCIN (-) = AMPVss + 0.2V		250	310	Ω

*1) When CTLCIN (+), CTLAMP (+) pins and CTLCIN (-), CTLAMP (-) pins are AC coupled, and then the signal is input from RECCTL (+) pin.
*2) The result after measuring the CTLFAMPO output waveform or voltage gain.
Note) The gain increases by approximately 1.5 dB when the AC coupling capacitor ($47 \mu \mathrm{~F}$) is connected to CTLAMP (+) and CTLAMP (-) pins, and the signal is input from CTLAMP (+) and CTLAMP (-) pins.
(3) CTL 2nd amplifier characteristics
$\left(\mathrm{Ta}=-20\right.$ to $+75^{\circ} \mathrm{C}, \mathrm{VDD}=\mathrm{AMPVDD}=5.0 \mathrm{~V}, \mathrm{Vss}=\mathrm{AMPVss}=0 \mathrm{~V}, \mathrm{CTLAG}$ reference $)$

Item	Symbol	Pin	Conditions	Min.	Typ.	Max.	Unit
Voltage gain*1, *2	Avctl2	CTLSAMPI	Gain $=5 \mathrm{~dB}$	4.8	5.8	6.8	dB
			Gain $=11 \mathrm{~dB}$	10.4	11.5	12.6	dB
			Gain $=16 \mathrm{~dB}$	15.3	16.5	17.7	dB
			Gain $=20 \mathrm{~dB}$	19.3	20.5	21.7	dB
LPF cut-off frequency *1, *2	fccti		$\mathrm{fbc}-3 \mathrm{~dB}$	15.0	25.0	40.0	kHz
Offset voltage *2	Vosctl2		CTLSAMPI = open	-50	0	+50	mV
Comparator level *2	Vcctl		Comparator level $=+100 \mathrm{mV} 0-\mathrm{p}$	70.0	100	130	mVo-p
			Comparator level $=+250 \mathrm{mV} 0-\mathrm{p}$	215	245	275	$m V_{0-p}$
			Comparator level $=+400 \mathrm{mV} 0-\mathrm{p}$	370	400	430	mVo-p
			Comparator level $=-100 \mathrm{mV} 0-\mathrm{p}$	-70.0	-100	-130	mVo-p
			Comparator level $=-250 \mathrm{mV} 0-\mathrm{p}$	-220	-250	-280	$m V_{0-p}$
			Comparator level $=-400 \mathrm{mV} 0-\mathrm{p}$	-370	-400	-430	$m V_{0}-\mathrm{p}$
Input resistance	Rinctl2		Charge switch OFF CTLSAMPI $=+0.2 \mathrm{~V}$	10.0	18.0		$\mathrm{k} \Omega$
Charge switch ON resistance	Rcctl2		Charge switch ON CTLSAMPI $=+0.5 \mathrm{~V}$		770	1140	Ω

*1) When the signal is input with the AC coupling capacitor $(47 \mu \mathrm{~F})$ connected to CTLSAMPI pin.
*2) The result after measuring the output waveform of amplifier internal low-pass filter or voltage value.
(4) CTLAMP characteristics (1st amplifier + 2nd amplifier)
$\left(\mathrm{Ta}=-20\right.$ to $+75^{\circ} \mathrm{C}, \mathrm{V} D \mathrm{~A}=\mathrm{AMPV} \mathrm{DD}=5.0 \mathrm{~V}, \mathrm{Vss}=\mathrm{AMPVss}=0 \mathrm{~V}$ reference $)$

Item	Symbol	Pin	Conditions	Min.	Typ.	Max.	Unit
Voltage gain *1	Avctl	RECCTL (+)	CTL 1st amplifier gain $=16 \mathrm{~dB}$ CTL 2nd amplifier gain $=20 \mathrm{~dB}$ RECCTL (-) = 0V	31.8	35.0	38.2	dB
Input amplitude (peak value)	VPKCTL		RECCTL (-) = 0V			± 300	mVo-p
Input sensitivity	Vsctl		$\begin{aligned} & \text { CTL 1st amplifier gain }=58 \mathrm{~dB} \\ & \text { CTL 2nd amplifier gain }=20 \mathrm{~dB} \\ & \text { Comparator level }=+400 \mathrm{mV} \mathrm{~d}-\mathrm{p} \\ & \text { RECCTL }(-)=0 \mathrm{~V} \end{aligned}$		0.08	0.10	mVo-p
Input dead band	Vnscti			0.015	0.04		mVo-p

*1) As for other combinations of the amplifier gains, CTL 1st amplifier and CTL 2nd amplifier are added respectively.
Note) The result when the signal is input from RECCTL (+) pin with CTL 1st amplifier + CTL 2nd amplifier after performing AC coupling of CTLCIN (+), CTLAMP (+) pins and CTLCIN (-), CTLAMP (-) pins, and CTLFAMPO, CTLSAMPI pins.
(5) CFGAMP characteristics
$\left(\mathrm{Ta}=-20\right.$ to $+75^{\circ} \mathrm{C}, \mathrm{VDD}=\mathrm{AMPVDD}=5.0 \mathrm{~V}, \mathrm{Vss}=\mathrm{AMPVDD}=0 \mathrm{~V}, \mathrm{VREFOUT}$ reference $)$

Item	Symbol	Pins	Conditions	Min.	Typ.	Max.	Unit
Voltage gain *1, *2	Avcfg	CFG	Gain $=0 \mathrm{~dB}$	-0.3	0.6	2.2	dB
			Gain $=20 \mathrm{~dB}$	19.2	20.8	22.4	dB
			Gain $=34 \mathrm{~dB}$	33.2	34.8	36.4	dB
			Gain $=38 \mathrm{~dB}$	37.0	38.7	40.4	dB
LPF cut-off frequency *1, *2	fccFa		$\mathrm{fbc}-3 \mathrm{~dB}$	30.0	55.0	80.0	kHz
Offset voltage *2	Voscfa		CFG = open	-50	0	+50	mV
Comparator judgment level width *2	Vccfa		Comparator schimitt width $=320 \mathrm{mVp}-\mathrm{p}$	260	320	360	mVp-p
			Comparator schimitt width $=160 \mathrm{mVp} \mathrm{p}$	110	155	200	mVp-p
Input sensitivity *1	VscFg		$\begin{aligned} & \text { Gain }=38 \mathrm{~dB} \\ & \text { Comparator level }=320 \mathrm{mVp}-\mathrm{p} \end{aligned}$		4.20	5.00	mVp-p
			$\begin{aligned} & \text { Gain }=38 \mathrm{~dB} \\ & \text { Comparator level }=160 \mathrm{mVp}-\mathrm{p} \end{aligned}$		2.10	2.40	mVp-p
Input dead band *1	VNSCFG		$\begin{aligned} & \text { Gain }=38 \mathrm{~dB} \\ & \text { Comparator level }=320 \mathrm{mVp}-\mathrm{p} \end{aligned}$	3.40	4.10		mVp-p
			$\begin{aligned} & \text { Gain }=38 \mathrm{~dB} \\ & \text { Comparator level }=160 \mathrm{mVp}-\mathrm{p} \end{aligned}$	1.50	2.00		mVp-p
Input resistance	Rincfg		Charge switch OFF $\mathrm{CFG}=+0.2 \mathrm{~V}$	5.5	8.3		k Ω
Charge switch ON resistance	Rccfa		Charge switch ON $\mathrm{CFG}=+0.5 \mathrm{~V}$		455	710	Ω
Digital output waveform duty ${ }^{*} 1, *_{3}$	Dtycfa		$C F G=$ sine wave with 50% duty	48.0	50.0	52.0	\%
Input amplitude (peak value) *1	VPKCFG					± 2.4	Vo-p

*1) When the signal is input with the AC coupling capacitor ($47 \mu \mathrm{~F}$) connected to CFG pin.
${ }^{*} 2$) The result after measuring the output waveform of amplifier internal low-pass filter or voltage value.
*3) The result after measuring the digital signal waveform output from the amplifier circuit.
(6) DFGAMP characteristics
$\left(\mathrm{Ta}=-20\right.$ to $+75^{\circ} \mathrm{C}, \mathrm{VdD}=\mathrm{AMPV} \mathrm{DD}=5.0 \mathrm{~V}, \mathrm{Vss}=\mathrm{AMPV} \mathrm{Ss}=0 \mathrm{~V}, \mathrm{VREFOUT}$ reference $)$

Item	Symbol	Pins	Conditions	Min.	Typ.	Max.	Unit
Voltage gain $*_{1} *^{2}$	Avdfg	DFG	Gain $=0 \mathrm{~dB}$	-0.3	0.6	2.2	dB
			Gain $=20 \mathrm{~dB}$	19.2	20.8	22.4	dB
			Gain $=34 \mathrm{~dB}$	33.2	34.8	36.4	dB
			Gain $=38 \mathrm{~dB}$	37.0	38.7	40.4	dB
LPF cut-off frequency *1, *2	fcDFG		$\mathrm{fbc}-3 \mathrm{~dB}$	30.0	55.0	80.0	kHz
Offset voltage *2	VosdFg		DFG = open	-50	0	+50	mV
Comparator judgment level width *2	VcdFg		Comparator schmitt width $=320 \mathrm{mV}$ - p	260	320	360	mVp-p
			Comparator schmitt width $=160 \mathrm{mVp}$-p	110	155	200	mVp-p
Inp	VsdFg		$\begin{aligned} & \text { Gain }=38 \mathrm{~dB} \\ & \text { Comparator level }=320 \mathrm{mVp}-\mathrm{p} \end{aligned}$		4.20	5.00	mVp-p
Input sens			$\begin{aligned} & \text { Gain }=38 \mathrm{~dB} \\ & \text { Comparator level }=160 \mathrm{mVp}-\mathrm{p} \end{aligned}$		2.10	2.40	mVp-p
Input dead band *1	VNSDFG		$\begin{aligned} & \text { Gain }=38 \mathrm{~dB} \\ & \text { Comparator level }=320 \mathrm{mVp}-\mathrm{p} \end{aligned}$	3.40	4.10		mVp-p
			$\begin{aligned} & \text { Gain }=38 \mathrm{~dB} \\ & \text { Comparator level }=160 \mathrm{mVp}-\mathrm{p} \end{aligned}$	1.50	2.00		mVp-p
Input resistance	Rindfg		Charge switch OFF DFG $=+0.2 \mathrm{~V}$	5.5	8.3		k Ω
Charge switch ON resistance	Rcdfg		Charge switch ON $\mathrm{DFG}=+0.5 \mathrm{~V}$		455	710	Ω
Digital output waveform duty *1, *3	DTYdFg		$C F G=$ sine wave of 50% duty	48.0	50.0	52.0	\%
Input amplitude (peak value) *1	VPKDFG					± 2.4	Vo-p

*1) When the signal is input with the AC coupling capacitor $(47 \mu \mathrm{~F})$ connected to DFG pin.
$\left.{ }^{*} 2\right)$ The result after measuring the output waveform of amplifier internal low-pass filter or voltage value.
*3) The result after measuring the digital signal waveform output from the amplifier circuit.
(7) DPGAMP characteristics
$\left(\mathrm{Ta}=-20\right.$ to $+75^{\circ} \mathrm{C}, \mathrm{VdD}=\mathrm{AMPV} \mathrm{DD}=5.0 \mathrm{~V}, \mathrm{Vss}=\mathrm{AMPVss}=0 \mathrm{~V}, \mathrm{VREFOUT}$ reference $)$

[^1](8) CTL write circuit characteristics
$\left(\mathrm{Ta}=-20\right.$ to $+75^{\circ} \mathrm{C}, \mathrm{VDD}=\mathrm{AMPV} \mathrm{DD}=5.0 \mathrm{~V}, \mathrm{Vss}=\mathrm{AMPV} s \mathrm{~S}=0 \mathrm{~V}$ reference $)$

Item	Symbol	Pins	Conditions	Min.	Typ.	Max.	Unit
Output resistance	Rон	RECCAP	RECCAP $=$ AMPVdd -0.5 V	450	625	1005	Ω
	Rol		RECCAP $=$ AMPVDd +0.5 V	410	555	840	Ω
Output current *1	Iorec	$\begin{aligned} & \text { RECCTL (+) } \\ & \text { RECCTL (-) } \end{aligned}$	Write current $=2.0 \mathrm{~mA}$	1.3	2.0	2.9	mA
			Write current $=2.5 \mathrm{~mA}$	1.7	2.5	3.7	mA
			Write current $=3.0 \mathrm{~mA}$	2.1	3.1	4.5	mA
			Write current $=3.5 \mathrm{~mA}$	2.6	3.6	5.2	mA
			Write current $=4.0 \mathrm{~mA}$	2.9	4.0	5.9	mA
			Write current $=4.5 \mathrm{~mA}$	3.3	4.6	6.6	mA
			Write current $=5.0 \mathrm{~mA}$	3.7	5.1	7.2	mA
			Write current $=5.5 \mathrm{~mA}$	4.0	5.6	8.0	mA
			Write current $=6.0 \mathrm{~mA}$	4.4	6.1	8.9	mA

*1) The current value which flows when RECCTL (+) pin and RECCTL (-) pin are shorted.
(9) Amplifier operating current characteristics
$\left(\mathrm{Ta}=-20\right.$ to $+75^{\circ} \mathrm{C}, \mathrm{VDD}=\mathrm{AMPVDD}=5.0 \mathrm{~V}, \mathrm{Vss}=\mathrm{AMPVss}=0 \mathrm{~V}$ reference $)$

Item	Symbol	Pins	Conditions	Min.	Typ.	Max.	Unit
Amplifier operating current	IAMP	AMPVDD	When the amplifier is operating *1		7.6	12.0	mA
					10	$\mu \mathrm{~A}$	

*1) The CTL recording current is added during CTL write.
Note) The amplifier operation and NOT-operation is controlled according to the contents of amplifier power supply control register (ASWC: 05E2н) bits 5, 4, 1 and 0.

Supplement

Fig. 9. Recommended oscillation circuit
(i)

(ii)

Manufacturer	Model	$\mathrm{fc}(\mathrm{MHz})$	$\mathrm{C}_{1}(\mathrm{pF})$	$\mathrm{C}_{2}(\mathrm{pF})$	Rd (Ω)	Circuit example
RIVER ELETEC CO., LTD.	HC-49/U03	8.00	10	10	0	(i)
		10.00	5	5		
		12.00				
		16.00				
KINSEKI LTD.	HC-49/U (-S)	8.00	16 (12)	16 (12)	0	(i)
		10.00	16 (12)	16 (12)		
		12.00	12	12		
		16.00	12	12		
	P3	32.768 kHz	30	18	470k	(ii)

Mask option table

Item	Content	
Reset pin pull-up resistor	Non-existent	Existent
Input circuit format*1	CMOS schmitt	TTL schmitt

*1) The input circuit format can be selected for PE3/SYNC pin.

Characteristics Curve

Idd vs. VDD
(fc $=16 \mathrm{MHz}, \mathrm{Ta}=25^{\circ} \mathrm{C}$, Typical)

IDD vs. fc
(VDD $=5.0 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$, Typical)

Package Outline Unit: mm

100PIN QFP (PLASTIC)

PACKAGE STRUCTURE

SONY CODE	QFP-100P-L01
EIAJ CODE	QFP100-P-1420
JEDEC CODE	-

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER PLATING
LEAD MATERIAL	$42 /$ COPPER ALLOY
PACKAGE MASS	1.7 g

[^0]: Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

[^1]: *1) When the signal is input with the AC coupling capacitor ($47 \mu \mathrm{~F}$) connected to DPG pin.
 $\left.{ }^{*} 2\right)$ The result after measuring the output waveform of amplifier internal low-pass filter or voltage value.

