8 -bit D / A Converter Compatible with ${ }^{12} C$ Bus

Description

The CXA1875AP/AM is developed as a 8-bit 5 ch D/A converter compatible with $I^{2} C$ bus.

Features

- Serial control through $\mathrm{I}^{2} \mathrm{C}$ bus
- 4 built-in general purpose I/O ports (Digital I/O)
- I/O can be specified to respective ports independently
- Selection of 8 slave addresses possible through address select pins (3 pins)

Applications

${ }^{12} \mathrm{C}$ bus can control ICs that do not correspond to $I^{2} \mathrm{C}$ bus by connecting the DC control pins of them.

Structure

Bipolar silicon monolithic IC

Absolute Maximum Ratings $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

- Supply voltage Vcc 7 V
- Operating temperature Topr -20 to $+75 \quad{ }^{\circ} \mathrm{C}$
- Storage temperature Tstg -65 to $+150 \quad{ }^{\circ} \mathrm{C}$
- Allowable power dissipation
Pd $960 \quad \mathrm{~mW}$

Operating Conditions

$\begin{array}{llcr}\text { - Supply voltage } & \text { Vcc } & 5 \pm 0.5 & \mathrm{~V} \\ \text { - Operating temperature } & \text { Topr } & -20 \text { to }+75 & { }^{\circ} \mathrm{C}\end{array}$

Pin Configuration (Top View)

Block Diagram

Pin Description

No.	Symbol	Equivalent circuit	Description
$\begin{gathered} 1 \\ 2 \\ 9 \\ 10 \end{gathered}$	SW1 SW0 SW2 SW3		I/O pin for general purpose I/O port VILmax: 1.5 V VIHmin: 3 V Volmax: 0.4 V
$\begin{aligned} & 14 \\ & 15 \end{aligned}$	SDA SCL		SDA I/O pin for ${ }^{12} \mathrm{C}$ bus
$\begin{aligned} & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \end{aligned}$	DAC4 DAC3 DAC2 DAC1 DAC0		D/A converter output pin
8	GND		GND pin
$\begin{aligned} & 11 \\ & 12 \\ & 13 \end{aligned}$	$\begin{aligned} & \text { SAD0 } \\ & \text { SAD1 } \\ & \text { SAD2 } \end{aligned}$		Slave address input pin Input at positive logic Vilmax: 1.5 V VIHmin: 3 V
16	Vcc	π 开 π	Power supply pin

Electrical Characteristics $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=5 \mathrm{~V}\right)$ D/A Converter Block

No.	Item	Symbol	Test circuit	Test contents	Min.	Typ.	Max.	Unit
1	Circuit current	Icc	1	DAC 0 to $4=127$	6	9	12	mA

2	Differential linearity	DLE	1	$\begin{aligned} & \frac{V(\text { (DACO to } 4=n+1)-V(D A C 0 \text { to } 4=N)}{V(D A C O \text { to } 4=191)-V(D A C O \text { to } 4=63)} \times 128-1 \\ & n=0 \text { to } 127 \end{aligned}$	-1	0	+1	LSB
3	Minimum output voltage	Vmin	1	DAC 0 to 4=0	0.1	0.4	0.7	V
4	Maximum output voltage	Vmax	1	DAC 0 to 4=255	4.3	4.6	4.9	V
5	Output current	lout	2	Current that can be flowed from Pins 3 to 7	-1		+1	mA
6	Output impedance	Zo	2	$\text { DAC } 0 \text { to } 4=127, \frac{\mathrm{~V}(-1 \mathrm{~mA})-\mathrm{V}(1 \mathrm{~mA})}{2 \mathrm{~mA}}$	0	3	6	Ω

SW, SAD Pins

No.	Item	Symbol	Text circuit	Test contents	Min.	Typ.	Max.	Unit
7	Low level input voltage	VIL	3	ST 0 to 3 an input voltage that turns to ' 0 '	-	-	1.5	V
8	High level input voltage	VIH	3	ST 0 to 3 an input voltage that turns to ' 1 '	3.0	-	-	V
9	Low level input current	IIL	3	Input current when 0.4 V is applied	-10	0	+10	$\mu \mathrm{A}$
10	High level input current	IIH	3	Input current when 4.5 V is applied	-10	0	+10	$\mu \mathrm{A}$
11	Low level input voltage	Vol	4	SW 0 to 3=1, Output voltage when 1 mA flows in	0	0.2	0.4	V

${ }^{1}$ ²C Bus Block Items (SDA, SCL)

No.	Item	Symbol	Min.	Typ.	Max.	Unit
12	High level input voltage	VIH	3.0	-	5.0	V
13	Low level input voltage	VIL	0	-	1.5	V
14	High level input current	IIH	-	-	10	$\mu \mathrm{A}$
15	Low level input current	IIL	-	-	10	$\mu \mathrm{A}$
16	Low level output voltage At 3 mA flow to SDA (Pin 14)	Vol	0	-	0.4	V
17	Maximum flowing current	loL	3	-	-	mA
18	Input capacitance	C	-	-	10	pF
19	Maximum clock frequency	fscl	0	-	100	kHz
20	Data change minimum waiting time	tBuF	4.7	-	-	$\mu \mathrm{s}$
21	Data transfer start minimum waiting time	thd:STA	4.0	-	-	$\mu \mathrm{s}$
22	Low level clock pulse width	tLow	4.7	-	-	$\mu \mathrm{s}$
23	High level clock pulse width	thigh	4.0	-	-	$\mu \mathrm{s}$
24	Minimum start preparation waiting time	tSu:STA	4.7	-	-	$\mu \mathrm{s}$
25	Minimum data hold time	thd:DAT	5	-	-	$\mu \mathrm{s}$
26	Minimum data preparation time	tSU:DAT	250	-	-	ns
27	Rise time	tR	-	-	1	$\mu \mathrm{s}$
28	Fall time	tF	-	-	300	ns
29	Minimum stop preparation waiting time	tsu:STO	4.7	-	-	$\mu \mathrm{s}$

${ }^{2} \mathrm{C}$ bus load conditions: Pull up resistance $4 \mathrm{k} \Omega$ (Connected to +5 V)
Load capacitance 200 pF (Connected to GND)

$I^{2} \mathrm{C}$ Bus Control Signal

Electrical Characteristics Test Circuit

Test circuit 1

Test circuit 3

Test circuit 2

Test circuit 4

Definition of $\mathrm{I}^{2} \mathrm{C}$ Register

<Slave address>

<Register table>

- With the IC reset all registers are reset to 0
- *: Not defined
- \times : Don't care
- Sub address is auto incremented
- It can be used as a 6-bit D/A converter by setting the lower two bits of DAC 0-4 registors to 0 , but take care that the max. voltage of DA output will lower about 100 mV compared with the use of 8 bits.

Control Register

Sub address	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
$\times \times \times \times \times 000$	REF	$*$	$*$	$*$	SW3	SW2	SW1	SW0
$\times \times \times \times \times 001$	DAC0 (8)							
$\times \times \times \times \times 010$	DAC1 (8)							
	$\times \times \times \times \times 011$	DAC2 (8)						
	$\times \times \times \times 100$	DAC3 (8)						

Status Register

BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BIT0
PONRES	0	0	0	ST3	ST2	ST1	ST0

<Registers> In brackets () number of bits

REF (1):	Switches D/A converter reference voltage $0: S t a n d a r d i z e s ~ t h e ~ i n n e r ~ r e g u l a t o r ~$ $1: S t a n d a r d i z e s ~ v o l t a g e ~ r e s i s t a n c e ~ d i v i d e d ~ f r o m ~ V c c ~$
SW0 to 3 (1):	Selects ON/OFF of Pins 1, 2, 9 and 10 (Each pin is the open collector output of NPN transistor) $0:$ OFF $1: O N$

DAC0 to 4 (8): Digital data input register of D/A converter
0:Output voltage turns to minimum
255:Output voltage turns to maximum

PONRES (1): Detects POWER ON RESET
0:Master passes from the bus and is reset to 0 after having read this status
1:Set to 1 when power supply is turned on or when there has been a power dip

ST0 to 3 (1): Detects and registers the voltage condition of Pins 1, 2, 9 and 10
$0: 1.5 \mathrm{~V}$ and below
1:3.0 V and above
Note) SW0 to 3 effective during 0

$I^{2} C$ Bus Signal

There are 2 signals in $I^{2} \mathrm{C}$ bus. SDA (Serial DAta) and SCL (Serial Clock).
SDA is double-way.

- As SDA is double-way it has 3 state outputs, H, L and HIZ.

- ${ }^{2} \mathrm{C}$ transfer begins with Start Condition and ends with Stop Condition.

- ${ }^{2} \mathrm{C}$ data write (Write from I ${ }^{2} \mathrm{C}$ controller to IC)

* The number of data that can be transferred at a time is confined to units of 8-bit that can be set as required. Sub Address is incremented automatically.
- $I^{2} \mathrm{C}$ data read (Read from IC to $I^{2} \mathrm{C}$ controller)

- Read timing

* Data read is performed with SCL rise.

Application Circuit

Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

Package Outline Unit: mm
CXA1875AP
16PIN DIP (PLASTIC)

Two kinds of package surface:
1.All mat surface type.
1.All mat surface type.

		PACKAGE STRUCTURE	
		PACKAGE MATERIAL	EPOXY RESIN
SONY CODE	DIP-16P-01	LEAD TREATMENT	SOLDER PLATING
EIAJ CODE	DIP016-P-0300	LEAD MATERIAL	COPPER ALLOY
Jedec Code	Similar to MO-001-AE	PACKAGE MASS	1.0 g

CXA1875AM

16PIN SOP (PLASTIC)

\$ 0.24 (M)

Purchase of Sony's $I^{2} \mathrm{C}$ components conveys a license under the Philips $I^{2} \mathrm{C}$ Patent Rights to use these components in an $1^{2} \mathrm{C}$ system, provided that the system conforms to the $I^{2} C$ Standard Specifications as defined by Philips.

