L-band Down Converter IC with On-Chip PLL

Description

The CXA3108AQ is a monolithic IC that downconverts the L-band (1 to 2 GHz) 1st IF to 2nd IF for satellite broadcast receivers. It integrates a local oscillator circuit, double-balanced mixer, IF AGC amplifier and tuning PLL onto a single chip.
This IC supports both analog and digital satellite broadcasts, and achieves reduction in the number of tuner components and smaller size.

Features

- On-chip tuning PLL
- Supports 2.65 GHz oscillator frequency
- Noise figure: 12.5 dB typ. (for IF full gain)
- IF AGC gain variation: 46 dB typ.
- Wide band IF AGC amplifier (60 to 500 MHz)
- Two IF outputs
- PLL supports ${ }^{2} \mathrm{C}$ protocol
- On-chip high voltage drive transistor for charge pump

Applications

- Analog satellite broadcast tuners (BS/CS)
- Digital satellite broadcast tuners (DSS/DVB, etc.)

Structure

Bipolar silicon monolithic IC

Absolute Maximum Ratings ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

- Supply voltage Vcc -0.3 to +5.5 V
- Storage temperature Tstg -55 to $+150{ }^{\circ} \mathrm{C}$
- Allowable power dissipation

$$
\begin{array}{lll}
\text { PD } \quad 730 \quad \mathrm{~mW}
\end{array}
$$

(when mounted on a substrate)

Operating Conditions

- Supply voltage Vcc 4.75 to 5.30 V
- Operating temperature Topr -25 to $+75{ }^{\circ} \mathrm{C}$

[^0][^1]
Block Diagram and Pin Configuration

Pin Description

$\begin{aligned} & \hline \text { Pin } \\ & \text { No. } \end{aligned}$	Symbol	Pin voltage [V]	Equivalent circuit	Description
1	IFOUT1	$\begin{gathered} 2.5 \\ (\text { IFSW } 0 \mathrm{~V} \text {) } \\ 4.7 \\ (\text { IFSW } 5 \mathrm{~V}) \end{gathered}$		IF outputs.
40	IFOUT2	$\begin{gathered} 4.7 \\ (\text { IFSW } 0 \text { V) } \\ 2.5 \\ (\text { IFSW } 5 \mathrm{~V}) \end{gathered}$		
2	IFGND2	0		IF output circuit GND.
3	IFSW	0 or 5		Selects whether IF output is Pin 1 or Pin 40. When this pin is connected to GND, the IF signal is output from Pin 1; when connected to Vcc, the IF signal is output from Pin 40.
4	IFVcc2	5		IF output circuit power supply.
5	IFVcc1	5		IF amplifier circuit power supply.
6	IFAGC	0 to 4		AGC signal input.
7	RFIN1	1.7		RF inputs.
8	RFIN2	1.7		
9	IFGND1	0		IF amplifier circuit GND.
10	RFGND	0		RF block GND.

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Symbol	Pin voltage [V]	Equivalent circuit	Description
23	STSW	-		Selects either the internal oscillator circuit or external input for input to PLL. When this pin is open or connected to Vcc, the internal oscillator circuit is selected; when connected to GND, external input is selected.
24	DVcc2	5		Charge pump power supply.
25	LOCK	$\begin{gathered} 5.0 \\ \text { (LOCK) } \\ 0.2 \\ \text { (UNLOCK) } \end{gathered}$		LOCK detection. High when locked, Low when unlocked.
26	ADC	-		ADC input.
27	SDA	-		DATA input.

$\begin{aligned} & \hline \text { Pin } \\ & \text { No. } \end{aligned}$	Symbol	Pin voltage [V]	Equivalent circuit	Description
28	SCL	-		CLOCK input.
29	ADSW	1.3		${ }^{2} \mathrm{C}$ bus address selection.
30	DVcc1	5		PLL circuit power supply.
31	XTAL	4.4		Crystal connection for reference oscillator.
32	DGND1	0		PLL circuit GND.
33	NC	-		

$\begin{aligned} & \hline \text { Pin } \\ & \text { No. } \end{aligned}$	Symbol	Pin voltage [V]	Equivalent circuit	Description
34	BUSSW	-		PLL circuit GND. Connect directly to GND.
35	PS1			
36	PS2	5.0		
37	PS3			
38	PS4			
39	GND	0		GND.

Electrical Characteristics

Circuit Current

Item	Symbol	Measurement conditions	Min.	Typ.	Max.	Unit
Circuit current A	Alcc	Analog circuit current Sum of RFVcc, IFVcc1 and IFVcc2 currents	42	62	82	mA
Circuit current D	DIcc	PLL circuit current Sum of DVcc1 and DVcc2 currents	18	30	40	mA

OSC/MIX/IF Amplifier Blocks

Item	Symbol	Measurement conditions	Min.	Typ.	Max.	Unit
Conversion gain	CG1	fin $=950 \mathrm{MHz}$, fif $=480 \mathrm{MHz}$ IFAGC=4 V (Full Gain)	15	21	25	dB
	CG2	fin $=1450 \mathrm{MHz}$, fif= $=480 \mathrm{MHz}$ IFAGC=4 V (Full Gain)	14	20	24	dB
	CG3	fin=2150 MHz, fif=480 MHz IFAGC=4 V (Full Gain)	18	24	28	dB
Noise figure	NF1	$\mathrm{fin}=950 \mathrm{MHz}, \mathrm{fIF}=480 \mathrm{MHz}$ IFAGC=4 V (Full Gain)		13	16	dB
	NF2	fin $=1450 \mathrm{MHz}$, fif= $=480 \mathrm{MHz}$ IFAGC=4 V (Full Gain)		13	16	dB
	NF3	fin=2150 MHz, fif= $=480 \mathrm{MHz}$ IFAGC=4 V (Full Gain)		13	16	dB
IFAGC gain variation range	AGC		35	50		dB
IF maximum output	PoSAT	$\mathrm{fiF}=480 \mathrm{MHz},$ 50Ω load saturated output		9		dBm
RF pin local oscillator leak	RFLK1	fosc=1430 to 1830 MHz			-20	dBm
	RFLK2	fosc=1830 to 2230 MHz			-20	dBm
	RFLK3	fosc=2230 to 2630 MHz			-25	dBm
IF pin local oscillator leak	IFLK1	fosc $=1430$ to 1830 MHz			-18	dBm
	IFLK2	fosc=1830 to 2230 MHz			-18	dBm
	IFLK3	fosc=2230 to 2630 MHz			-20	dBm
Tertiary intermodulation distortion	IM3	$\mathrm{Pin}=-25 \mathrm{dBm}$ IFAGC=4 V (Full Gain) fin $=935 \mathrm{MHz}, 940 \mathrm{MHz}$ fout= $475 \mathrm{MHz}, 480 \mathrm{MHz}$ S / I of 480 MHz and 475 MHz	38	45		dB
Local oscillator phase noise	CN1	fosc= 1430 MHz 10 kHz offset		80		$\mathrm{dBc} / \mathrm{Hz}$
	CN2	fosc $=1430 \mathrm{MHz}$ 100 kHz offset		100		$\mathrm{dBc} / \mathrm{Hz}$
RF input impedance	r π	$\mathrm{f}=950 \mathrm{MHz}$		12.9		Ω
	$\mathrm{C} \pi$	$\mathrm{f}=950 \mathrm{MHz}$		1.84		pF

PLL Block

Item	Symbol	Measurement conditions	Min.	Typ.	Max.	Unit
External local input level	EXT			-20		dBm
SDA, SCL						
High level input voltage	VIH		3		Vcc	V
Low level input voltage	VIL		GND		1.5	V
High level input current	IIH	VIH=Vcc		0	-0.1	$\mu \mathrm{A}$
Low level input current	IIL	VIL=GND		-1	-2	$\mu \mathrm{A}$
SDA Low output voltage	LsDA	Sink current=3 mA			0.4	V
Clock input hysteresis	Clhys		0.25	0.4	0.65	V
CPO (charge pump)						
Output current 1	ICPO1	Byte 4/bit 6=0 and for 3WB	± 35	± 50	± 75	$\mu \mathrm{A}$
Output current 2	ICPO2	Byte 4/bit 6	± 125	± 180	± 270	$\mu \mathrm{A}$
ADC						
Input current	IADC	Input voltage=5 V		0.2		$\mu \mathrm{A}$
LOCK						
High output voltage	VLKH	Load resistance $10 \mathrm{k} \Omega$, for LOCK			Vcc	V
Low output voltage	VLKL	Load resistance $10 \mathrm{k} \Omega$, for UNLOCK			0.5	V
REFOSC						
Oscillator frequency range	Fxtosc		3		12	MHz
Input capacitance	Cxtosc			14		pF
Drive level	Vxtosc			200		mV
PS1 to PS4						
Pull-in current	SinkPs	When ON			1	mA
Leak current	Leakps	When OFF			200	nA

Bus Timing

Item	Symbol	Measurement conditions	Min.	Typ.	Max.	Unit
I2C Bus						
SCL clock frequency	fsCL		0		400	kHz
Start waiting time	twsTA		1300			ns
Start hold time	tHSTA		600			ns
Low hold time	tLOW		1300			ns
High hold time	tHIGH		600			ns
Start setup time	tsSTA		600			ns
Data hold time	tHDAT		1300			ns
Data setup time	tsDAT		600			ns
Rise time	tR				300	ns
Fall time	tF				300	ns
Stop setup time	tssTO		600			ns

Description of Functions

The CXA3108AQ is a tuner IC for satellite broadcast receivers. It converts the RF signal down-converted to 1st IF (1 to 2 GHz) at the LNB to 2nd IF, so that only the desired reception frequency is selected and detected.
This IC combines the mixer, local oscillator and IF amplifier (variable gain) circuits required for frequency conversion to 2nd IF, and the PLL circuit which controls the local oscillator frequency onto a single chip. The function of each block is described below.

1. Mixer Circuit

This circuit outputs the frequency difference between the signal input to RF IN and the local oscillator signal. A double-balanced mixer with minimal local oscillator signal leak is used. RF input is equivalent to a differential amplifier with emitter grounding.

2. Local Oscillator Circuit

A Colpitts oscillator with differential operation is used for the oscillator circuit, so it is stable relative to supply voltage fluctuation, and undesired radiation is suppressed. This circuit also contains a capacitor which is part of the resonance circuit, so there is minimal parasitic oscillation and design of external circuits is easier.

3. IF Amplifier Circuit

This circuit amplifies the mixer IF output, and is comprised of an AGC amplifier stage and low impedance output stage.
The gain can be varied by the AGC pin voltage (range 0 to 4 V) at the AGC amplifier stage. The maximum gain is approximately 20 dB (voltage gain between RF IN and IF OUT), and the gain variation width is 30 dB or more.
The output stage has two unbalanced outputs, and can directly connect two SAW filters with different pass bandwidths. Output pin selection is determined by the IF SW pin voltage.
The IF amplifier circuit is a wide band amplifier circuit, and can be used in the IF frequency range of 60 to 500 MHz .
4. PLL Circuit-1 (normal operation: when the STSW pin is open or connected to Vcc)

The PLL circuit fixes the local oscillator frequency to the desired frequency. It consists of the prescaler, main divider, reference divider, phase comparator, charge pump and reference oscillator. The control format supports the I2C bus protocol.
When the power (DVcc1) is turned on, the power-on reset circuit activates and the frequency division data and control data are all initialized to 0 . The power-on reset threshold is 3 V at normal temperature ($\mathrm{Ta}=25$ ${ }^{\circ} \mathrm{C}$).
5. PLL Circuit-2 (external input PLL operation: when the STSW pin is connected to GND)

When the STSW pin is connected to GND, the PLL enters independent operation mode where the PLL only is used with the oscillator signal input from the external signal input pin.

Description of PLL Block

1. Programming

1-1. The main divider frequency division ratio is obtained according to the following formulas.

fosc $=$ fref $\times(16 M+S)$ or fosc $=$ fref $\times 2 \times(16 M+S)($ when $P E=1)$
fosc: local oscillator frequency
fref : comparison frequency
2 : prescaler fixed frequency division ratio (when $\mathrm{PE}=1$)
M : main divider frequency division ratio
S : swallow counter frequency division ratio
The variable frequency division ranges of M and S are as follows.

$$
S \leq M \leq 4095
$$

$$
0 \leq S \leq 15
$$

During PLL independent operation (STSW = GND), the prescaler halving frequency division cannot be added.

1-2. $\mathrm{I}^{2} \mathrm{C}$ Bus

This IC conforms to the standard ${ }^{12} \mathrm{C}$ bus format, and bidirectional bus control is possible consisting of a write mode in which various data are received and a read mode in which various data are sent.
Write and read modes are recognized according to the setting of the final bit (R/W bit) of the address byte. Write mode is set when the R/W bit is " 0 ", and read mode is set when the R/W bit is " 1 ".

1-2-1. Address Setting

The responding address can be changed by the ADSW pin voltage to allow more than one PLL in a system.
<Table 1> Address

ADSW pin voltage	MA1	MA0
0 to 0.1 Vcc	0	0
OPEN	0	1
0.4 Vcc to 0.6 Vcc	1	0
0.9 Vcc to Vcc	1	1

1-2-2. Data format

Write mode is used to receive various data. In this mode, byte 1 contains the address data, bytes 2 and 3 contain the frequency data, and bytes 4 and 5 contain the various control data.
These data are latch transferred in the manner of byte 1 , byte $2+$ byte 3 , byte 4 , and byte 5 . When the correct address is received, the data is recognized as frequency data if the first bit of the next byte is " 0 ", and as control data if this bit is " 1 ".
Also, when data transmission is stopped part-way, the previously programmed data is valid. Therefore, once the control data has been programmed, 3-byte commands consisting of the address and frequency data are possible.
Further, even if the ${ }^{2}{ }^{2} \mathrm{C}$ bus stop conditions are not met, data can be input by sending the start conditions and the new address.

In read mode, the power-on reset operation status, phase comparator locked/unlocked status and 5value A/D converter input pin voltage status are transmitted to the master.
Power-on reset is set to " 1 " when the supply voltage (DVcc1) power supply is cut off.
If $D V c c 1$ is 3 V or higher and the status is output in the read mode, this bit is reset to " 0 ".

Write mode: slave receiver

	MSB							LSB	
MODE	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
Address byte	1	1	0	0	0	MA1	MA0	0	A
Divider byte 1	0	M10	M9	M8	M7	M6	M5	M4	A
Divider byte 2	M3	M2	M1	M0	S3	S2	S1	S0	A
Control byte 1	1	M12	M 11	PE	R3	R2	R1	R0	A
Control byte 2	OS	CP	0	0	P4	P3	P2	P1	A

Read mode: slave transmitter

MODE	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
Address byte	1	1	0	0	0	MA1	MA0	1	
Status byte	PR	FL	1	1	1	A2	A1	A0	

P1 to P4 : port control
M0 to M12 : main divider frequency division ratio setting
S0 to S3 : swallow counter frequency division ratio setting
OS : varicap output OFF (when "1")
CP : charge pump current switching
PE : prescaler halving frequency division added (when "1")
PR : power-on reset
FL : lock detection signal
A0 to A2 : 5-value ADC data (ADC pin voltage conversion: Table 2)
R0 to R3 : reference divider frequency division ratio selection (Table 3)
<Table 2> ADC Conversion Table

ADC pin voltage	A2	A1	A0
0 to 0.15 Vcc	0	0	0
0.15 Vcc to 0.3 Vcc	0	0	1
0.3 Vcc to 0.45 Vcc	0	1	0
0.45 Vcc to 0.6 Vcc	0	1	1
0.6 Vcc to Vcc	1	0	0

<Table 3> Reference Divider Frequency Division Ratio

R3	R2	R1	R0	Frequency division ratio
0	0	0	0	2
0	0	0	1	4
0	0	1	0	8
0	0	1	1	16
0	1	0	0	32
0	1	0	1	64
0	1	1	0	128
0	1	1	1	256
1	0	0	0	-
1	0	0	1	5
1	0	1	0	10
1	0	1	1	20
1	1	0	0	40
1	1	0	1	80
1	1	1	0	160
1	1	1	1	320

${ }^{12} \mathrm{C}$ Bus Timing Chart

tSSTA =Start setup time
twSTA =Start waiting time
tHSTA $=$ Start hold time
tLow =LOW clock pulse width
tHIGH $=$ HIGH clock pulse width
tSDAT =Data setup time
thDAT =Data hold time
tssto $=$ Stop setup time
tR =Rise time
tF =Fall time

Example of Representative Characteristics

NF characteristics $\mathrm{IF}=480 \mathrm{MHz}, \mathrm{AGC}=4 \mathrm{~V}$
Untuned input, DSB display

$$
-17-
$$

Input Impedance

Output Impedance

[^0]: Notes on Handling
 This IC has a weak electrostatic discharge strength. Take care when handling the IC.

[^1]: Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

