SONY

CXA3108AQ

L-band Down Converter IC with On-Chip PLL

Description

The CXA3108AQ is a monolithic IC that downconverts the L-band (1 to 2 GHz) 1st IF to 2nd IF for satellite broadcast receivers. It integrates a local oscillator circuit, double-balanced mixer, IF AGC amplifier and tuning PLL onto a single chip.

This IC supports both analog and digital satellite broadcasts, and achieves reduction in the number of tuner components and smaller size.

Features

- On-chip tuning PLL
- Supports 2.65 GHz oscillator frequency
- Noise figure: 12.5 dB typ. (for IF full gain)
- IF AGC gain variation: 46 dB typ.
- Wide band IF AGC amplifier (60 to 500 MHz)
- Two IF outputs
- PLL supports I²C protocol
- On-chip high voltage drive transistor for charge pump

Applications

- Analog satellite broadcast tuners (BS/CS)
- Digital satellite broadcast tuners (DSS/DVB, etc.)

Structure

Bipolar silicon monolithic IC

Absolute Maximum Ratings (Ta=25 °C)

- Supply voltage Vcc -0.3 to +5.5 V
- Storage temperature Tstg -55 to +150 °C
- Allowable power dissipation

PD 730 mW

(when mounted on a substrate)

Operating Conditions

 Supply voltage 	Vcc	4.75 to 5.30	V
Operating temperature	Topr	–25 to +75	°C

Notes on Handling This IC has a weak electrostatic discharge strength. Take care when handling the IC.

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

Block Diagram and Pin Configuration

Pin Description

Pin No.	Symbol	Pin voltage [V]	Equivalent circuit	Description
1	IFOUT1	2.5 (IFSW 0 V) 4.7 (IFSW 5 V)	IFVcc2	
40	IFOUT2	4.7 (IFSW 0 V) 2.5 (IFSW 5 V)		IF outputs.
2	IFGND2	0		IF output circuit GND.
3	IFSW	0 or 5	(4) 30k 100k 100k 100k 100k	Selects whether IF output is Pin 1 or Pin 40. When this pin is connected to GND, the IF signal is output from Pin 1; when connected to Vcc, the IF signal is output from Pin 40.
4	IFVcc2	5		IF output circuit power supply.
5	IFVcc1	5		IF amplifier circuit power supply.
6	IFAGC	0 to 4	5 6 40k 777 777 777	AGC signal input.
7	RFIN1	1.7		RF inputs
8	RFIN2	1.7		
9	IFGND1	0		IF amplifier circuit GND.
10	RFGND	0		RF block GND.

—3—

Pin No.	Symbol	Pin voltage [V]	Equivalent circuit	Description
11	BIAS	1.8	12 200 11 777 777 777 777 777	Oscillator circuit current adjustment. Connect this pin to GND via a capacitor.
12	RFVcc	5		RF block power supply.
13	OSCB1	2.2	(13) (14) (15) (16)	
14	OSCE1	1.5		Oscillator pins
15	OSCE2	1.5	2.5k	
16	OSCB2	2.2	111 111 111	
17	GND	0		GND.
18	DGND2	0		Charge pump GND.
19	EXTIN1	2.5	$30 \qquad \qquad$	PLL external inputs.
20	EXTIN2	2.5	20k \$ 25k	
21	VT	_	DVcc224	NPN transistor output for varicap diode drive.
22	СРО	_		Charge pump output. Connect a loop filter.

Pin No.	Symbol	Pin voltage [V]	Equivalent circuit	Description
23	STSW		30 20k 23 777 777 777 777 777 777 777	Selects either the internal oscillator circuit or external input for input to PLL. When this pin is open or connected to Vcc, the internal oscillator circuit is selected; when connected to GND, external input is selected.
24	DVcc2	5		Charge pump power supply.
25	LOCK	5.0 (LOCK) 0.2 (UNLOCK)	DVcc1 (25)	LOCK detection. High when locked, Low when unlocked.
26	ADC			ADC input.
27	SDA		$\begin{array}{c} 30 \\ \hline \\ 27 \\ \hline \\ 2.5k \\ \hline \\ 40k \\ 777 \\ $	DATA input.

Pin No.	Symbol	Pin voltage [V]	Equivalent circuit	Description
28	SCL		30 28 777 777 777 777	CLOCK input.
29	ADSW	1.3	30 ≥ 150k 29 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	I ² C bus address selection.
30	DVcc1	5		PLL circuit power supply.
31	XTAL	4.4	30 30 50k 30p 31 50k 30p 50k 30p 50k 30p 50k 30p 50k 50k 50k 50k 50k 50k 50k 50k	Crystal connection for reference oscillator.
32	DGND1	0		PLL circuit GND.
33	NC			

Pin No.	Symbol	Pin voltage [V]	Equivalent circuit	Description
34	BUSSW		30 34 777 777 777 777	PLL circuit GND. Connect directly to GND.
35	PS1			
36	PS2	5.0 (OFF)		Output ports
37	PS3	0.2 (ON)		
38	PS4			
39	GND	0		GND.

Electrical Characteristics Circuit Current

(Vcc=5 V, Ta=25 °C)

Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Unit
	Alec	Analog circuit current	12	62	82	mA
	AICC	Sum of RFVcc, IFVcc1 and IFVcc2 currents	42			
	Dicc	PLL circuit current	10	30	40	m۸
		Sum of DVcc1 and DVcc2 currents	10	30	40	IIIA

OSC/MIX/IF Amplifier Blocks

Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Unit
	CG1	fin=950 MHz, fi⊧=480 MHz IFAGC=4 V (Full Gain)	15	21	25	dB
Conversion gain	CG2	fin=1450 MHz, fir=480 MHz IFAGC=4 V (Full Gain)	14	20	24	dB
	CG3	fin=2150 MHz, fir=480 MHz IFAGC=4 V (Full Gain)	18	24	28	dB
	NF1	fin=950 MHz, fı⊧=480 MHz IFAGC=4 V (Full Gain)		13	16	dB
Noise figure	NF2	fin=1450 MHz, fiF=480 MHz IFAGC=4 V (Full Gain)		13	16	dB
	NF3	fin=2150 MHz, fı⊧=480 MHz IFAGC=4 V (Full Gain)		13	16	dB
IFAGC gain variation range	AGC		35	50		dB
IF maximum output	PoSAT	fı=480 MHz, 50 Ω load saturated output		9		dBm
PE nin local oscillator	RFLK1	fosc=1430 to 1830 MHz			-20	dBm
	RFLK2	fosc=1830 to 2230 MHz			-20	dBm
ICak	RFLK3	fosc=2230 to 2630 MHz			-25	dBm
IE nin local oscillator	IFLK1	fosc=1430 to 1830 MHz			-18	dBm
	IFLK2	fosc=1830 to 2230 MHz			-18	dBm
ICAN	IFLK3	fosc=2230 to 2630 MHz			-20	dBm
Tertiary intermodulation distortion	IM3	Pin=–25 dBm IFAGC=4 V (Full Gain) fin=935 MHz, 940 MHz fout=475 MHz, 480 MHz S/I of 480 MHz and 475 MHz	38	45		dB
Local oscillator phase	CN1	fosc=1430 MHz 10 kHz offset		80		dBc/Hz
noise	CN2	fosc=1430 MHz 100 kHz offset		100		dBc/Hz
PE input impodance	rπ	f=950 MHz		12.9		Ω
	Сπ	f=950 MHz		1.84		pF

PLL Block

Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Unit
External local input level	EXT			-20		dBm
SDA, SCL						
High level input voltage	Viн		3		Vcc	V
Low level input voltage	VIL		GND		1.5	V
High level input current	Ін	VIH=Vcc		0	-0.1	μA
Low level input current	lı∟	VIL=GND		-1	-2	μA
SDA Low output voltage	Lsda	Sink current=3 mA			0.4	V
Clock input hysteresis	CIHYS		0.25	0.4	0.65	V
CPO (charge pump)	•					
Output current 1	ICPO1	Byte 4/bit 6=0 and for 3WB	±35	±50	±75	μA
Output current 2	Ісро2	Byte 4/bit 6	±125	±180	±270	μA
ADC						
Input current	IADC	Input voltage=5 V		0.2		μA
LOCK						
High output voltage	Vlkh	Load resistance 10 k Ω , for LOCK			Vcc	V
Low output voltage	Vlkl	Load resistance 10 k Ω , for UNLOCK			0.5	V
REFOSC						
Oscillator frequency range	Fxtosc		3		12	MHz
Input capacitance	Схтоѕс			14		pF
Drive level	Vxtosc			200		mV
PS1 to PS4						
Pull-in current	Sinkes	When ON			1	mA
Leak current	Leakes	When OFF			200	nA

Bus Timing

Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Unit
I ² C Bus						
SCL clock frequency	fsc∟		0		400	kHz
Start waiting time	t WSTA		1300			ns
Start hold time	t HSTA		600			ns
Low hold time	tLOW		1300			ns
High hold time	tніgн		600			ns
Start setup time	t SSTA		600			ns
Data hold time	t hdat		1300			ns
Data setup time	t SDAT		600			ns
Rise time	tR				300	ns
Fall time	tF				300	ns
Stop setup time	tssto		600			ns

Electrical Characteristics Measurement Circuit

Description of Functions

The CXA3108AQ is a tuner IC for satellite broadcast receivers. It converts the RF signal down-converted to 1st IF (1 to 2 GHz) at the LNB to 2nd IF, so that only the desired reception frequency is selected and detected.

This IC combines the mixer, local oscillator and IF amplifier (variable gain) circuits required for frequency conversion to 2nd IF, and the PLL circuit which controls the local oscillator frequency onto a single chip. The function of each block is described below.

1. Mixer Circuit

This circuit outputs the frequency difference between the signal input to RF IN and the local oscillator signal. A double-balanced mixer with minimal local oscillator signal leak is used. RF input is equivalent to a differential amplifier with emitter grounding.

2. Local Oscillator Circuit

A Colpitts oscillator with differential operation is used for the oscillator circuit, so it is stable relative to supply voltage fluctuation, and undesired radiation is suppressed. This circuit also contains a capacitor which is part of the resonance circuit, so there is minimal parasitic oscillation and design of external circuits is easier.

3. IF Amplifier Circuit

This circuit amplifies the mixer IF output, and is comprised of an AGC amplifier stage and low impedance output stage.

The gain can be varied by the AGC pin voltage (range 0 to 4 V) at the AGC amplifier stage. The maximum gain is approximately 20 dB (voltage gain between RF IN and IF OUT), and the gain variation width is 30 dB or more.

The output stage has two unbalanced outputs, and can directly connect two SAW filters with different pass bandwidths. Output pin selection is determined by the IF SW pin voltage.

The IF amplifier circuit is a wide band amplifier circuit, and can be used in the IF frequency range of 60 to 500 MHz.

4. PLL Circuit-1 (normal operation: when the STSW pin is open or connected to Vcc)

The PLL circuit fixes the local oscillator frequency to the desired frequency. It consists of the prescaler, main divider, reference divider, phase comparator, charge pump and reference oscillator. The control format supports the I²C bus protocol.

When the power (DVcc1) is turned on, the power-on reset circuit activates and the frequency division data and control data are all initialized to 0. The power-on reset threshold is 3 V at normal temperature (Ta=25 °C).

5. PLL Circuit-2 (external input PLL operation: when the STSW pin is connected to GND)

When the STSW pin is connected to GND, the PLL enters independent operation mode where the PLL only is used with the oscillator signal input from the external signal input pin.

Description of PLL Block

1. Programming

1-1. The main divider frequency division ratio is obtained according to the following formulas.

fosc = fref \times (16M + S) or fosc = fref \times 2 \times (16M + S) (when PE = 1)

- fosc: local oscillator frequency
 - fref : comparison frequency
 - 2 : prescaler fixed frequency division ratio (when PE = 1)
 - M : main divider frequency division ratio
 - S : swallow counter frequency division ratio

The variable frequency division ranges of M and S are as follows.

 $S \leq M \leq 4095$

 $0 \le S \le 15$

During PLL independent operation (STSW = GND), the prescaler halving frequency division cannot be added.

1-2. I²C Bus

This IC conforms to the standard I²C bus format, and bidirectional bus control is possible consisting of a write mode in which various data are received and a read mode in which various data are sent. Write and read modes are recognized according to the setting of the final bit (R/W bit) of the address byte. Write mode is set when the R/W bit is "0", and read mode is set when the R/W bit is "1".

1-2-1. Address Setting

The responding address can be changed by the ADSW pin voltage to allow more than one PLL in a system.

<Table 1> Address

ADSW pin voltage	MA1	MA0
0 to 0.1 Vcc	0	0
OPEN	0	1
0.4 Vcc to 0.6 Vcc	1	0
0.9 Vcc to Vcc	1	1

1-2-2. Data format

Write mode is used to receive various data. In this mode, byte 1 contains the address data, bytes 2 and 3 contain the frequency data, and bytes 4 and 5 contain the various control data.

These data are latch transferred in the manner of byte 1, byte 2 + byte 3, byte 4, and byte 5. When the correct address is received, the data is recognized as frequency data if the first bit of the next byte is "0", and as control data if this bit is "1".

Also, when data transmission is stopped part-way, the previously programmed data is valid. Therefore, once the control data has been programmed, 3-byte commands consisting of the address and frequency data are possible.

Further, even if the I²C bus stop conditions are not met, data can be input by sending the start conditions and the new address.

In read mode, the power-on reset operation status, phase comparator locked/unlocked status and 5-value A/D converter input pin voltage status are transmitted to the master.

Power-on reset is set to "1" when the supply voltage (DVcc1) power supply is cut off.

If DVcc1 is 3 V or higher and the status is output in the read mode, this bit is reset to "0".

	MSB							LSB	
MODE	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
Address byte	1	1	0	0	0	MA1	MA0	0	A
Divider byte 1	0	M10	M9	M8	M7	M6	M5	M4	A
Divider byte 2	M3	M2	M1	MO	S3	S2	S1	S0	A
Control byte 1	1	M12	M11	PE	R3	R2	R1	R0	A
Control byte 2	OS	CP	0	0	P4	P3	P2	P1	A

Write mode: slave receiver

Read mode: slave transmitter

MODE	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	
Address byte	1	1	0	0	0	MA1	MA0	1	
Status byte	PR	FL	1	1	1	A2	A1	A0	

P1 to P4	:	port control
M0 to M12	:	main divider frequency division ratio setting
S0 to S3	:	swallow counter frequency division ratio setting
OS	:	varicap output OFF (when "1")
CP	:	charge pump current switching
PE	:	prescaler halving frequency division added (when "1")
PR	:	power-on reset
FL	:	lock detection signal
A0 to A2	:	5-value ADC data (ADC pin voltage conversion: Table 2)
R0 to R3	:	reference divider frequency division ratio selection (Table 3)

<Table 2> ADC Conversion Table

ADC pin voltage	A2	A1	A0
0 to 0.15Vcc	0	0	0
0.15 Vcc to 0.3 Vcc	0	0	1
0.3 Vcc to 0.45 Vcc	0	1	0
0.45 Vcc to 0.6 Vcc	0	1	1
0.6 Vcc to Vcc	1	0	0

<table 3=""></table>	Reference	Divider	Frequency	Division	Ratio
----------------------	-----------	---------	-----------	----------	-------

R3	R2	R1	R0	Frequency division ratio
0	0	0	0	2
0	0	0	1	4
0	0	1	0	8
0	0	1	1	16
0	1	0	0	32
0	1	0	1	64
0	1	1	0	128
0	1	1	1	256
1	0	0	0	_
1	0	0	1	5
1	0	1	0	10
1	0	1	1	20
1	1	0	0	40
1	1	0	1	80
1	1	1	0	160
1	1	1	1	320

I²C Bus Timing Chart

twsta =Start waiting time tHsta =Start hold time tLow =LOW clock pulse width tHIGH =HIGH clock pulse width tsDAT =Data setup time tHDAT =Data hold time tssto =Stop setup time tr =Rise time tF =Fall time

Example of Representative Characteristics

—16—

Input Impedance

Output Impedance

Package Outline Unit : mm

