SLD1134VL

M-274

0

650nm Pulsation Red Laser Diode

Description

The SLD1134VL is a pulsation red laser diode designed for DVD systems.

Features

- Low noise
- Standard package (φ5.6mm)

Application

DVD

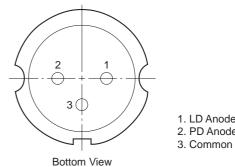
Structure

- AlGaInP quantum well-structure laser diode
- PIN photo diode for optical power output monitor

Recommended Optical Power Output

4mW

Absolute Maximum Ratings (Tc = 25°C)


 Optical power output 	Po		5	mW
 Reverse voltage 	V_{R}	LD	2	V
		PD	20	V

• Operating temperature -10 to +70 °C Topr • Storage temperature Tstg -40 to +85 °C

Connection Diagram

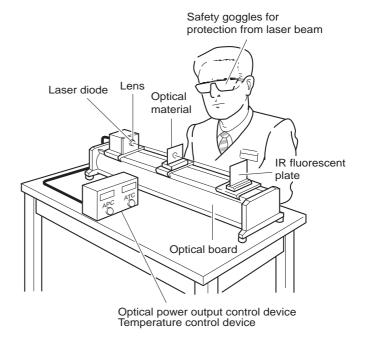
Pin Configuration

1. LD Anode 2. PD Anode

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

Electrical and Optical Characteristics

Tc: Case temperature

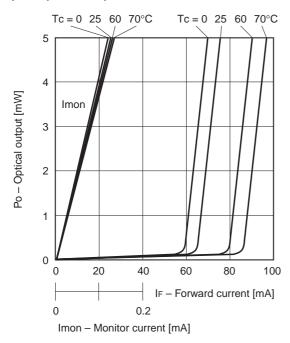

	Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Threshold	current	Ith			65	80	mA
Operating current	lop1	D = 4 ms \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		75	90	mA	
Operating	current	lop2 *1	Po = 4mW			120	mA
Operating	voltage	Vop	Po = 4mW		2.3	2.8	V
Wavelengt	h	λρ	Po = 4mW	640	655	660	nm
Radiation	Perpendicular	θΤ	Po = 4mW	25	35	40	degree
Angle	Parallel	θ//		7	8.5	12	degree
D ::: 1	Position	ΔΧ, ΔΥ, ΔΖ	Po = 4mW			±80	μm
Positional accuracy	Anglo	Δφ//				±2	degree
	Angle	Δφ⊥				±3	degree
Differential	efficiency	ηD	Po = 4mW	0.15	0.4	0.7	mW/mA
Astigmatis	m	As	Po = 4mW		10		μm
Monitor cu	rrent	Imon	Po = 4mW VR = 5V	0.05	0.1	0.25	mA

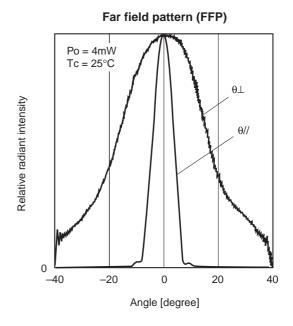
^{*1} Tc = 70°C

Handling Precautions

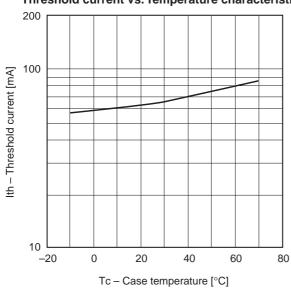
(1) Eye protection against laser beams

The optical output of laser diodes ranges from several mW to 4W. However the optical power density of the laser beam at the diode chip reaches 1MW/cm². Unlike gas lasers, since laser diode beams are divergent, uncollimated laser diode beams are fairly safe at a laser diode. For observing laser beams, ALWAYS use safety goggles that block infrared rays. Usage of IR scopes, IR cameras and fluorescent plates is also recommended for monitoring laser beams safely.

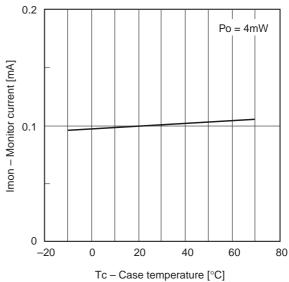


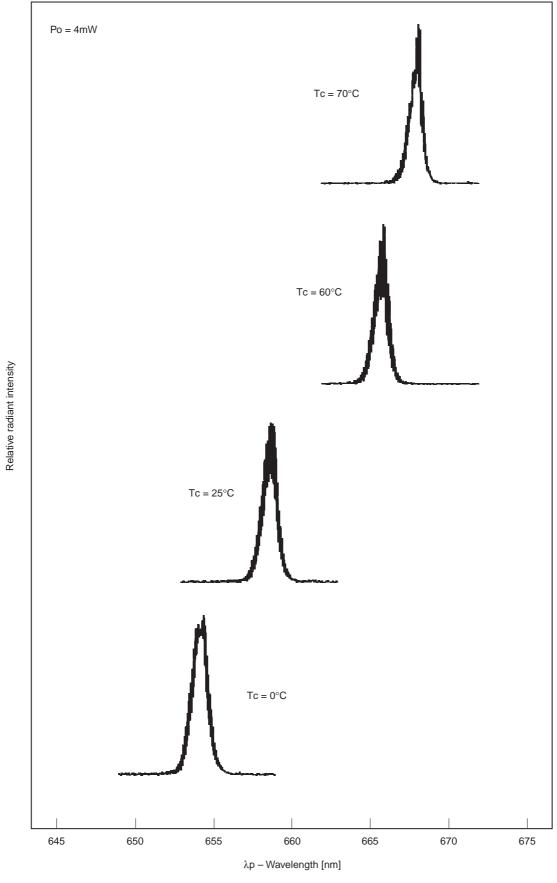

(2) Prevention of surge current and electrostatic discharge

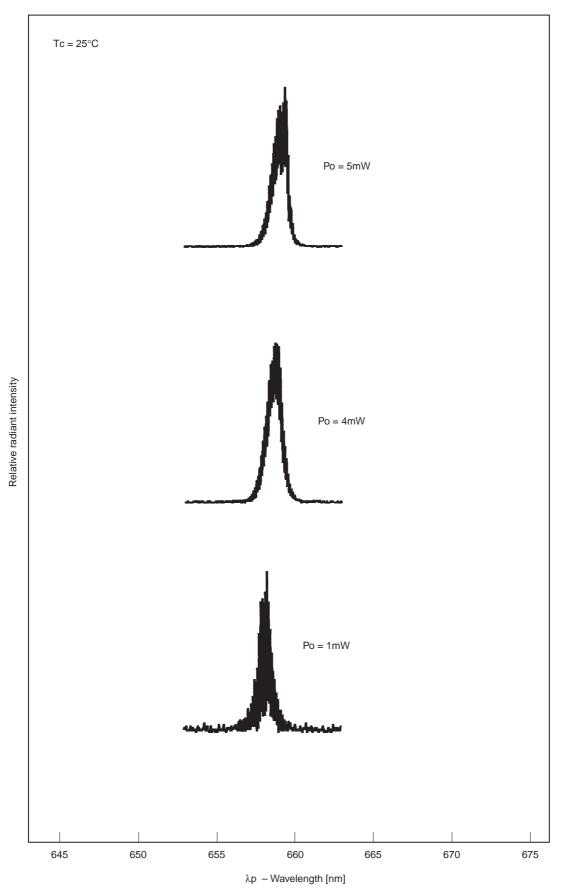
Laser diode is most sensitive to electrostatic discharge among semiconductors. When a large current is passed through the laser diode even for an extremely short time (in the order of nanosecond), the strong light emitted from the laser diode promotes deterioration and then laser diodes are destroyed. Therefore, note that the surge current should not flow the laser diode driving circuit from switches and others. Also, if the laser diode is handled carelessly, it may be destructed instantly because electrostatic discharge is easily applied by a human body. Be great careful about excess current and electrostatic discharge.

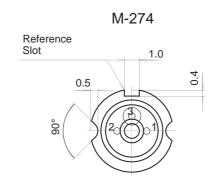

Example of Representative Characteristics

Optical power output vs. Forward current characteristics Optical power output vs. Monitor current characteristics




Threshold current vs. Temperature characteristics


Monitor current vs. Temperature characteristics


Temperature dependence of spectrum

Power output dependence of spectrum

Package Outline Unit: mm

SONY CODE	M-274
EIAJ CODE	
JEDEC CODE	

PACKAGE WEIGHT 0.3g		0.3g
---------------------	--	------