1-chip Cassette Deck

For the availability of this product, please contact the sales office.

Description

The CXA1599Q is an IC for audio cassette decks. All analog signal processing functions, except Dolby NR, are incorporated in a single chip. As a result, a double cassette deck system can be simply configured by adding a Dolby IC.

Features

- Electronic recording volume for setting recording level (with a balance volume)
- Recording equalizer amplifier
(with calibration and low frequency boost functions)
- Recording mute function (soft mute and fader possible)
- Playback head amplifier switch function (deck A/B switch)
- NR pass amplifier (NR IN/PASS switch)
- Headphone amplifier with electronic volume
- Full-wave rectifier output amplifier for level meter (with time constant function)
- HPF amplifier for AMS (with BS/AMS gain switch function)
- Electronic switch for tape EQ selection (120 $\mathrm{s} / 70 \mu \mathrm{~s}$)
- Electronic switch for metal tape selection
- Electronic switch for normal/double speed dubbing selection (only for recording equalizer)
- Line mute function
- Double cassette dubbing system can be easily configured with this single IC.

Applications

Analog signal processing (except Dolby NR) for stereo analog cassette deck
(ALPS ELECTRIC CO., LTD. HADKH-55460 head applicable)

Structure

Bipolar silicon monolithic IC

Absolute Maximum Ratings ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

- Supply voltage Vcc 17 V
- Operating temperature Topr -20 to $+75{ }^{\circ} \mathrm{C}$
- Storage temperature Tstg -65 to $+150{ }^{\circ} \mathrm{C}$
- Allowable power dissipation PD 735 mW

Operating Conditions

Supply voltage
Vcc ± 5.0 to $\pm 8.0 \mathrm{~V}$
(positive/negative dual power supply)
10.0 to 16.0 V
(single power supply)

[^0]
Block Diagram

Pin Description
$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=7 \mathrm{~V}, \mathrm{VEE}=-7 \mathrm{~V}, \mathrm{DVcc}=5 \mathrm{~V}\right.$, No signal $)$

Pin No.	Symbol	$\begin{array}{\|c\|} \hline \text { DC } \\ \text { voltage } \end{array}$	I/O	I/O resistance	Equivalent circuit	Description
$\begin{gathered} 1 \\ 36 \end{gathered}$	$\begin{aligned} & \text { BOOST1 } \\ & \text { BOOST2 } \end{aligned}$	0.0V	-	$9.5 \mathrm{k} \Omega$		Connects the external capacitor for low frequency boost of recording equalizer amplifier. *When low frequency boost is not executed: During positive/ negative dual power supply \rightarrow Connect to GND. During single power supply \rightarrow Connect a capacitor (over $3.3 \mu \mathrm{~F}$).
2 3	REC OUT1 REC OUT2	0.0V	O	0Ω		Output of recording equalizer amplifier.
4	GP CAL		I	$54 \mathrm{k} \Omega$		Calibration for high frequency gain of recording equalizer amplifier. Controls by applying the DC voltage of DGND to DVcc. High \rightarrow Gain up Low \rightarrow Gain down *When high frequency calibration function is not used, keep pin open.

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Symbol	$\begin{gathered} \hline \text { DC } \\ \text { voltage } \end{gathered}$	I/O	IO resistance	Equivalent circuit	Description
5	REC CAL	$\begin{aligned} & 2.5 \mathrm{~V} \\ & \text { (During } \\ & \text { OPEN) } \end{aligned}$	1	$54 \mathrm{k} \Omega$		Calibration for overall frequency gain of recording equalizer amplifier. Controls by applying the DC voltage of DGND to DVcc. High \rightarrow Gain up Low \rightarrow Gain down *When recording calibration function is not used, keep this pin open.
$\begin{aligned} & 6 \\ & 7 \\ & 8 \\ & 8 \\ & 9 \end{aligned}$	PB INB1 PB INB2 PB INA1 PB INA2					Input of playback equalizer amplifier.
$\begin{aligned} & 37 \\ & 48 \end{aligned}$	REC IN2 REC IN1	0.0V	1	$50 \mathrm{k} \Omega$		Input of recording equalizer amplifier.
$\begin{aligned} & 38 \\ & 47 \end{aligned}$	NR IN2 NR IN1				(47) $\underset{\text { VEE }}{\stackrel{\rightharpoonup}{7}}$	Input pin for connecting Dolby line (decode) output signal.
10	HP VOL REC VOL	$\begin{aligned} & \text { O.OV } \\ & \text { (During } \\ & \text { OPEN) } \end{aligned}$	1	100k Ω		Pin 10: Control for headphone volume Pin 33: Control for recording volume Controls by applying the DC voltage of DGND to DVcc for each pin. High \rightarrow Volume up Low \rightarrow Volume down

Pin No.	Symbol	$\begin{array}{\|c\|} \mathrm{DC} \\ \text { voltage } \end{array}$	I/O	I/O resistance	Equivalent circuit	Description
11 12	HP OUT1 HP OUT2	0.0V	O	0Ω		Output of headphone volume
$\begin{aligned} & 13 \\ & 14 \end{aligned}$	METER1 METER2	0.0V	O	-		Output of level meter amplifier
$\begin{aligned} & 15 \\ & 16 \end{aligned}$	PVee Vee	-7.0V	-	-	(15) \longrightarrow TO PVEE (16) $\longrightarrow T O V_{E E}$	During positive/negative dual power supply \rightarrow Connect to negative power supply. During single power supply \rightarrow Connect to GND.
17	Vcc	7.0V	-	-	(17) \longrightarrow To Vcc	Positive power supply.
18	DGND	0.0V	-	-	(18) \longrightarrow To DGND	Connect to GND.
19	DVcc	5.0V	-	$60 \mathrm{k} \Omega$		Power supply for control.

$\begin{aligned} & \hline \text { Pin } \\ & \text { No. } \end{aligned}$	Symbol	DC voltage	I/O	$\begin{array}{c\|} \hline 1 / O \\ \text { resistance } \end{array}$	Equivalent circuit	Description
20	AMS OUT	0.0V	0	0Ω		Output of AMS/BS amplifier.
21	REC MUTE	-	1	-		Mute ON/OFF switch of recording equalizer amplifier. Controls by applying the DC voltage of DGND to DVcc. High \rightarrow Mute OFF Low \rightarrow Mute ON *Soft mute/fader switch is possible by changing the time constant of the external time constant circuit.
22	SPEED					Tape speed switch High \rightarrow High speed Low \rightarrow Normal speed
23	METAL					Deck B metal tape switch High \rightarrow Metal tape Low \rightarrow Norm, CrO2 tape
26	LINE MUTE	-	1	-		Line mute ON/OFF switch High \rightarrow Mute OFF Low \rightarrow Mute ON
27	AMS BS					AMS/BS switch High \rightarrow AMS mode Low \rightarrow BS mode
29	$\begin{aligned} & \text { DECK } \\ & \text { A/B } \end{aligned}$					Deck A/B playback switch High \rightarrow PBINB Low \rightarrow PBINA

Pin No	Symbol	DC voltage	I/O	I/O resistance	Equivalent circuit	Description
24	B EQ					Deck B equalizer switch High $\rightarrow 70 \mu \mathrm{~s}$ EQ (CrO2 tape) Low $\rightarrow 120 \mu \mathrm{~s}$ EQ (Norm tape)
25	$\begin{aligned} & \text { NR } \\ & \text { PASS } \end{aligned}$	-	1	-		NR/PASS input switch High \rightarrow PASS IN Low \rightarrow NR IN
28	A EQ					Deck A equalizer switch High $\rightarrow 70 \mu \mathrm{~s}$ EQ Low $\rightarrow 120$ s EQ
$\begin{aligned} & 30 \\ & 31 \end{aligned}$	LINE IN1 LINE IN2	0.0V	1	0Ω		Line input. $47 \mathrm{k} \Omega$ resistance connected externally.
32	REC BAL	$\begin{gathered} 2.5 \mathrm{~V} \\ \text { (During } \\ \text { OPEN) } \end{gathered}$	1	100k Ω		Balance control of recording volume Controls by applying the DC voltage of DGND to DVcc. High \rightarrow VOL OUT1 Low \rightarrow VOL OUT2

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Symbol	$\begin{gathered} \hline \text { DC } \\ \text { voltage } \end{gathered}$	I/O	$\begin{array}{\|c\|} \hline \mathrm{I} / \mathrm{O} \\ \text { resistance } \end{array}$	Equivalent circuit	Description
$\begin{aligned} & 34 \\ & 35 \end{aligned}$	LINE OUT1 LINE OUT2	0.0V	0	0Ω		
39 46	$\begin{array}{\|l} \text { PASS } \\ \text { IN2 } \\ \text { PASS } \\ \text { IN1 } \end{array}$	0.0V	1	$20 \mathrm{k} \Omega$		
						Connects the playback equalizer amplifier output through DC cut off. Input for signals not passing Dolby decode.
40 45	PB OUT2 PB OUT1	0.0V	O	0Ω		Output of playback equalizer amplifier.

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Symbol	$\begin{array}{\|c\|} \hline \text { DC } \\ \text { voltage } \\ \hline \end{array}$	I/O	$\begin{array}{\|c\|} \hline \text { I/O } \\ \text { resistance } \end{array}$	Equivalent circuit	Description
41 44	VOL OUT2 VOL OUT1	0.0V	0	0Ω		Output of recording volume.
42	$\begin{aligned} & \text { GND } \\ & \text { (VG) } \end{aligned}$	0.0V	-	$15 \mathrm{k} \Omega$		During positive/negative dual power supply \rightarrow Connect to GND. During single power supply \rightarrow Connect a capacitor (over $10 \mu \mathrm{~F}$) to remove center ripple.
43	IREF	-5.8V	-	-		Reference current setting for recording/ playback equalizer. Connect a $27 \mathrm{k} \Omega$ resistance.

Electrical Characteristics
$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=7 \mathrm{~V}, \mathrm{Vee}=-7 \mathrm{~V}, \mathrm{DVcc}=5 \mathrm{~V}\right)$

Block	Item	Conditions	Min.	Typ.	Max.	Unit
Overall	Circuit current (Icc)	$\mathrm{VOL} / \mathrm{BAL}=2.5 \mathrm{~V}, \mathrm{CAL}=$ Open, LINE Mute = off, NR Pass = NR ON DECK A/B = A-DECK, $A-E Q=120 \mu \mathrm{~s}$, AMS/BS = BS Tape (B-EQ) = NORMAL, NORM-Speed, REC Mute $=$ off	23.0	31.0	39.0	mA
Overall	Operating voltage range 1 (Positive/negative dual power supply)	$\mathrm{VOL} / \mathrm{BAL}=2.5 \mathrm{~V}, \mathrm{CAL}=$ Open, LINE Mute = off, NR Pass = NR ON DECK A/B = A-DECK, $A-E Q=120 \mu \mathrm{~s}$, AMS/BS = BS Tape (B-EQ) = NORMAL, NORM-Speed, REC Mute $=$ off	± 5.0	± 7.0	± 8.0	V
Overall	Operating voltage range 2 (Single power supply)	VOL/BAL $=2.5 \mathrm{~V}, \mathrm{CAL}=$ Open, LINE Mute = off, NR Pass = NR ON DECK A/B = A-DECK, $A-E Q=120 \mu \mathrm{~s}$, AMS/BS = BS Tape (B-EQ) = NORMAL, NORM-Speed, REC Mute $=$ off	10.0	14.0	16.0	V
Recording equalizer	Recording equalizer amplifier Recording reference output level NORM-NORM mode	Reference output level of recording equalizer amplifier (315 Hz) (Output level for magnetic flux of " $0 \mathrm{~dB}=250 \mathrm{nWb} / \mathrm{m}$ "; tape reference level) Recording equalizer block uses this level as reference.	-	-3.0	-	dBv
Recording equalizer	Recording equalizer amplifier Recording reference input level NORM-NORM mode	Input level for outputting reference output level of $315 \mathrm{~Hz},-3.0 \mathrm{dBv}$	-19.2	-17.7	-16.2	dBv
Recording equalizer	NORM-NORM mode REC-EQ frequency characteristics 1 (3kHz, -20 dB)	NORM-Tape, NORM-Speed mode By inputting 3 kHz signal attenuated from reference by -20 dB to REC IN pin, relative deviation is measured for NORM-NS at 315 Hz .	-1.6	0.2	2.2	dB
Recording equalizer	NORM-NORM mode REC-EQ frequency characteristics 2 ($8 \mathrm{kHz},-20 \mathrm{~dB}$)	NORM-Tape, NORM-Speed mode By inputting 8 kHz signal attenuated from reference by -20 dB to REC IN pin, relative deviation is measured for NORM-NS at 315 Hz .	2.9	5.6	8.1	dB
Recording equalizer	NORM-NORM mode REC-EQ frequency characteristics 3 ($12 \mathrm{kHz},-20 \mathrm{~dB}$)	NORM-Tape, NORM-Speed mode By inputting 12 kHz signal attenuated from reference by -20 dB to REC IN pin, relative deviation is measured for NORM-NS at 315 Hz .	7.5	11.5	15.1	dB

Block	Item	Conditions	Min.	Typ.	Max.	Unit
Recording equalizer	$\mathrm{CrO}_{2}-\mathrm{NORM}$ mode REC-EQ frequency characteristics 1 ($3 \mathrm{kHz},-20 \mathrm{~dB}$)	CrO2-Tape, NORM-Speed mode By inputting 3 kHz signal attenuated from reference by -20dB to REC IN pin, relative deviation is measured for NORM-NS at 315 Hz .	4.3	6.2	7.9	dB
Recording equalizer	CrO2-NORM mode REC-EQ frequency characteristics 2 ($8 \mathrm{kHz},-20 \mathrm{~dB}$)	CrO2-Tape, NORM-Speed mode By inputting 8 signal attenuated from reference by -20 dB to $\mathrm{REC} \operatorname{IN}$ pin, relative deviation is measured for NORM-NS at 315 Hz .	9.0	11.4	13.7	dB
Recording equalizer	CrO2-NORM mode REC-EQ frequency characteristics 3 (12kHz, -20dB)	CrO2-Tape, NORM-Speed mode By inputting 12 kHz signal attenuated from reference by -20dB to REC IN pin, relative deviation is measured for NORM-NS at 315Hz.	13.4	17.1	20.5	dB
Recording equalizer	METAL-NORM mode REC-EQ frequency characteristics 1 (3kHz, -20dB)	METAL-Tape, NORM-Speed mode By inputting 3 kHz signal attenuated from reference by -20dB to REC IN pin, relative deviation is measured for NORM-NS at 315Hz.	4.1	5.8	7.5	dB
Recording equalizer	METAL-NORM mode REC-EQ frequency characteristics 2 ($8 \mathrm{kHz},-20 \mathrm{~dB}$)	METAL-Tape, NORM-Speed mode By inputting 8 kHz signal attenuated from reference by - 20 dB to $\mathrm{REC} \operatorname{IN}$ pin, relative deviation is measured for NORM-NS at 315Hz.	7.4	9.4	11.4	dB
Recording equalizer	METAL-NORM mode REC-EQ frequency characteristics 3 (12kHz, -20dB)	METAL-Tape, NORM-Speed mode By inputting 12 kHz signal attenuated from reference by -20dB to REC IN pin, relative deviation is measured for NORM-NS at 315 Hz .	10.5	13.5	16.3	dB
Recording equalizer	NORM-HIGH mode REC-EQ frequency characteristics 1 ($5 \mathrm{kHz},-20 \mathrm{~dB}$)	NORM-Tape, HIGH-Speed mode By inputting 5 kHz signal attenuated from reference by -20dB to REC IN pin, relative deviation is measured for NORM-NS at 315Hz.	-5.1	-3.3	-1.6	dB
Recording equalizer	NORM-HIGH mode REC-EQ frequency characteristics 2 (15kHz, -20dB)	NORM-Tape, HIGH-Speed mode By inputting 15 kHz signal attenuated from reference by -20dB to REC IN pin, relative deviation is measured for NORM-NS at 315 Hz .	-0.5	2.3	5.0	dB
Recording equalizer	NORM-HIGH mode REC-EQ frequency characteristics 3 (20kHz, -20dB)	NORM-Tape, HIGH-Speed mode By inputting 20 KHz signal attenuated from reference by -20dB to REC IN pin, relative deviation is measured for NORM-NS at 315 Hz .	3.1	6.8	10.2	dB
Recording equalizer	CrO2-HIGH mode REC-EQ frequency characteristics 1 ($5 \mathrm{kHz},-20 \mathrm{~dB}$)	CrO2-Tape, HIGH-Speed mode By inputting 5 kHz signal attenuated from reference by -20dB to REC IN pin, relative deviation is measured for NORM-NS at 315 Hz .	1.0	2.8	4.5	dB
Recording equalizer	CrO2-HIGH mode REC-EQ frequency characteristics 2 (15kHz, -20dB)	CrO2-Tape, HIGH-Speed mode By inputting 15 kHz signal attenuated from reference by -20dB to REC IN pin, relative deviation is measured for NORM-NS at 315 Hz .	5.4	8.0	10.5	dB
Recording equalizer	CrO2-HIGH mode REC-EQ frequency characteristics 3 (20kHz, -20dB)	CrO2-Tape, HIGH-Speed mode By inputting 20 kHz signal attenuated from reference by -20dB to REC IN pin, relative deviation is measured for NORM-NS at 315 Hz .	8.3	11.9	15.2	dB

Block	Item	Conditions	Min.	Typ.	Max.	Unit
Recording equalizer	METAL-HIGH mode REC-EQ frequency characteristics 1 ($5 \mathrm{kHz},-20 \mathrm{~dB}$)	METAL-Tape, HIGH-Speed mode By inputting 5 kHz signal attenuated from reference by -20 dB to $\mathrm{REC} \operatorname{IN}$ pin, relative deviation is measured for NORM-NS at 315 Hz .	1.5	3.2	4.7	dB
Recording equalizer	METAL-HIGH mode REC-EQ frequency characteristics 2 (15kHz, -20dB)	METAL-Tape, HIGH-Speed mode By inputting 15 kHz signal attenuated from reference by -20 dB to $\mathrm{REC} \operatorname{IN}$ pin, relative deviation is measured for NORM-NS at 315 Hz ,	3.4	5.9	8.2	dB
Recording equalizer	METAL-HIGH mode REC-EQ frequency characteristics 3 (20kHz, -20dB)	METAL-Tape, HIGH-Speed mode By inputting 20 kHz signal attenuated from reference by -20dB to REC IN pin, relative deviation is measured for NORM-NS at 315 Hz	5.9	8.8	11.5	dB
Recording equalizer	NORM-NORM mode REC-EQ signal handling ($1 \mathrm{kHz}, \mathrm{THD}=1 \%$, RL=2.7k Ω)	NORM-Tape, NORM-Speed mode, $\mathrm{RL}=2.7 \mathrm{k} \Omega$ Output level when THD becomes 1% by inputting 1 kHz signal	12.0	14.0	-	dB
Recording equalizer	NORM-NORM mode REC-EQ total harmonic distortion ($1 \mathrm{kHz}, 0.0 \mathrm{~dB}$, $\mathrm{RL}=2.7 \mathrm{k} \Omega$)	NORM-Tape, NORM-Speed mode, $R L=2.7 \mathrm{k} \Omega$ By inputting $1 \mathrm{kHz}, 0.0 \mathrm{~dB}$ (reference input level) signal, distortion is measured. (Distortion is measured as THD + N.)	-	0.12	0.6	\%
Recording equalizer	NORM-NORM mode REC-EQ S/N ratio ("A" weighting filter)	NORM-Tape, NORM-Speed mode, $\mathrm{Rg}=5.1 \mathrm{k} \Omega$ Noise is measured using "A" weighting filter with no signal. (Measured value is shown in relative value to reference level.)	57.0	61.0	-	dB
Recording equalizer	NORM-NORM mode Output DC offset voltage (REC OUT pin)	NORM-Tape, NORM-Speed mode, no signal DC offset voltage is measured at REC OUT pin.	-280	0	280	mV
Recording equalizer	NORM-NORM mode REC-EQ mute characteristics 1 (REC-MUTE = 0.5 V)	NORM-Tape, NORM-Speed mode, REC-MUTE $=0.5 \mathrm{~V}$ By inputting 1 kHz signal which is +12 dB up from reference input level, attenuation is measured during recording mute. (Using 1kHz BPF)	-	-90.0	-82.0	dB
Recording equalizer	NORM-NORM mode REC-EQ mute characteristics 2 (REC-MUTE = 2.5 V)	NORM-Tape, NORM-Speed mode, REC-MUTE $=2.5 \mathrm{~V}$ By inputting $1 \mathrm{kHz}, 0.0 \mathrm{~dB}$ (reference level) signal, attenuation characteristics curve of soft mute function is measured (with 2.5 V at REC-MUTE pin).	-8.0	-6.6	-5.0	dB
Recording equalizer	NORM-NORM mode REC-EQ REC-CAL characteristics 1 (REC-CAL = 5.0V)	NORM-Tape, NORM-Speed mode, REC-CAL $=5.0 \mathrm{~V}$ By inputting 315 Hz signal attenuated from reference by $-20 \mathrm{~dB}, \mathrm{REC}-\mathrm{CAL}$ function is measured as variation from standard mode.	2.2	4.6	7.0	dB
Recording equalizer	NORM-NORM mode REC-EQ REC-CAL characteristics 2 $(\text { REC-CAL }=0.0 \mathrm{~V})$	NORM-Tape, NORM-Speed mode, REC-CAL $=0.0 \mathrm{~V}$ By inputting 315 Hz signal attenuated from reference by -20dB, REC-CAL function is measured as variation from standard mode.	-6.8	-5.4	-4.0	dB

Black	Item	Conditions	Min.	Typ.	Max.	Unit.
Recording equalizer	NORM-NORM mode REC-EQ Gp-CAL characteristics 1 $(\mathrm{Gp}-\mathrm{CAL}=5.0 \mathrm{~V})$	NORM-Tape, NORM-Speed mode, $\mathrm{Gp}-\mathrm{CAL}=5.0 \mathrm{~V}$ By inputting 8 kHz signal attenuated from reference by -20dB, Gp-CAL function is measured as variation from standard mode.	1.4	3.2	5.5	dB
Recording equalizer	NORM-NORM mode REC-EQ Gp-CAL characteristics 2 (Gp-CAL $=0.0 \mathrm{~V}$)	NORM-Tape, NORM-Speed mode, $\mathrm{Gp}-\mathrm{CAL}=0.0 \mathrm{~V}$ By inputting 8 kHz signal attenuated from reference by - 20 dB , Gp-CAL function is measured as variation from standard mode.	-5.8	-3.7	-1.5	dB
Recording volume	Recording volume amplifier Recording volume characteristics 1 $(\mathrm{REC}-\mathrm{VOL}=5.0 \mathrm{~V},$ $\text { REC-BAL }=2.5 \mathrm{~V})$	REC-VOL $=5.0 \mathrm{~V}, \mathrm{REC}-\mathrm{BAL}=2.5 \mathrm{~V}$, Rin $=47 \mathrm{k} \Omega$ By inputting $1 \mathrm{kHz},-6.0 \mathrm{dBv}$ signal to $\mathrm{Rin}=$ $47 \mathrm{k} \Omega$ connected to "LINE IN" pin, full gain of recording volume amplifier is measured.	2.4	5.0	7.7	dB
Recording volume	Recording volume amplifier Recording volume characteristics 2 (REC-VOL $=2.0 \mathrm{~V}$, REC-BAL $=2.5 \mathrm{~V}$)	$\mathrm{REC}-\mathrm{VOL}=2.0 \mathrm{~V}, \mathrm{REC}-\mathrm{BAL}=2.5 \mathrm{~V},$ Rin $=47 \mathrm{k} \Omega$ By inputting $1 \mathrm{kHz},-6.0 \mathrm{dBv}$ signal to $\mathrm{Rin}=$ 47k Ω connected to "LINE IN " pin, attenuation of recording volume amplifier is measured.	-9.7	-8.7	-7.7	dB
Recording volume	Recording volume amplifier Recording volume attenuation (REC-VOL $=0.0 \mathrm{~V}$, REC-BAL $=2.5 \mathrm{~V}$)	REC-VOL $=0.0 \mathrm{~V}, \mathrm{REC}-\mathrm{BAL}=2.5 \mathrm{~V}$, Rin $=47 \mathrm{k} \Omega$ By inputting 1kHz, -6.0dBv signal, max. volume attenuation of recording volume amplifier is measured. (Using 1 kHz BPF)	-	-82.0	-77.0	dB
Recording volume	Recording volume amplifier REC-VOL signal handling $(1 \mathrm{kHz}, \mathrm{THD}=1 \% \text {, }$ $R L=2.7 \mathrm{k} \Omega$)	$\begin{aligned} & \mathrm{REC}-\mathrm{VOL}=2.0 \mathrm{~V}, \mathrm{REC}-\mathrm{BAL}=2.5 \mathrm{~V}, \text { Rin }= \\ & 47 \mathrm{k} \Omega, \mathrm{RL}=2.7 \mathrm{k} \Omega \\ & \text { Input level when THD becomes } 1 \% \text { by } \\ & \text { inputting } 1 \mathrm{kHz} \text { signal } \end{aligned}$	6.0	8.0	-	dBv
Recording volume	Recording volume amplifier REC-VOL total harmonic distortion ($1 \mathrm{kHz},-6.0 \mathrm{dBv}$, $R L=2.7 \mathrm{k} \Omega$)	REC-VOL = 2.0V , REC-BAL = 2.5V, Rin $=47 \mathrm{k} \Omega$, RL $=2.7 \mathrm{k} \Omega$ By inputting $1 \mathrm{kHz},-6.0 \mathrm{dBv}$ (reference input level) signal, distortion is measured. (Distortion is measured as THD +N .)	-	0.06	0.4	\%
Recording volume	Recording volume amplifier REC-VOL S/N ratio ("A" weighting filter)	$\text { REC-VOL }=5.0 \mathrm{~V}, \mathrm{REC}-\mathrm{BAL}=2.5 \mathrm{~V},$ $\operatorname{Rin}=47 \mathrm{k} \Omega$ Noise is measured using "A" weighting filter with no signal. (Measured value is shown in relative value to full gain.)	77.0	82.0	-	dB
Recording volume	Recording volume amplifier Output DC offset voltage (VOL OUT pin)	REC-VOL $=5.0 \mathrm{~V}, \mathrm{REC}-\mathrm{BAL}=2.5 \mathrm{~V}$, Rin $=47 \mathrm{k} \Omega$ DC offset voltage is measured at VOL OUT pin with no signal.	120	0	120	mV

Block	Item	Conditions	Min.	Typ.	Max.	Unit
Recording volume	Recording volume amplifier REC-VOL balance characteristics 1 $\begin{aligned} & (\mathrm{REC}-\mathrm{VOL}=5.0 \mathrm{~V}, \\ & \text { REC-BAL }=0.0 \mathrm{~V}) \end{aligned}$	REC-VOL $=5.0 \mathrm{~V}$, REC $-B A L=0.0 \mathrm{~V}$, $\operatorname{Rin}=47 \mathrm{k} \Omega$, ($1 \mathrm{kHz}-\mathrm{BPF}$) Attenuation of "VOL OUT1" at 1 kHz is measured. To "VOL OUT2"	-	-55.0	-44.0	dB
Recording volume	Recording volume amplifier REC-VOL balance characteristics 2 (REC-VOL $=5.0 \mathrm{~V}$, REC$B A L=5.0 \mathrm{~V}$)	REC-VOL $=5.0 \mathrm{~V}$, REC $-B A L=5.0 \mathrm{~V}$, $\operatorname{Rin}=47 \mathrm{k} \Omega$, ($1 \mathrm{kHz}-\mathrm{BPF}$) Attenuation of "VOL OUT2" at 1 kHz is measured. To "VOL OUT1"	-	-55.0	-44.0	dB
Line amplifier	Line amplifier Line amplifier gain (NR IN $=1 \mathrm{kHz},-11.0 \mathrm{dBv}$)	NR Pass = NR ON (1.0V), line mute $=$ mute off $(2.5 \mathrm{~V})$ Gain at 1 kHz is measured.	3.8	4.8	5.8	dB
Line amplifier	Line amplifier signal handling ($1 \mathrm{kHz}, \mathrm{THD}=1 \%$, $\mathrm{RL}=2.7 \mathrm{k} \Omega$)	NR Pass = NR ON (1.0V), line mute $=$ off $(2.5 \mathrm{~V}), \mathrm{RL}=2.7 \mathrm{k} \Omega$ Input level when THD becomes 1% by inputting 1 kHz signal	12.0	15.0	-	dB
Line amplifier	Line amplifier Line amplifier total harmonic distortion (1kHz, -11.0 dBv , $\mathrm{RL}=2.7 \mathrm{k} \Omega)$	NR Pass = NR ON (1.0V), line mute $=$ off $(2.5 \mathrm{~V}), \mathrm{RL}=2.7 \mathrm{k} \Omega$ By inputting $1 \mathrm{kHz},-11.0 \mathrm{~dB}$ (reference input level) signal, distortion is measured. (Distortion is measured as THD + N.)	-	0.03	0.4	\%
Line amplifier	Line amplifier Line amplifier S / N ratio ("A" weighting filter)	NR Pass = NR ON (1.0V), line mute $=$ off $(2.5 \mathrm{~V}), \mathrm{Rg}=5.1 \mathrm{k} \Omega$ Noise is measured using "A" weighting filter with no signal. (Measured value is shown in relative value to reference level.)	75.8	85.8	-	dB
Line amplifier	Line amplifier Output DC offset voltage (LINE OUT pin)	NR Pass = NR ON (1.0V), line mute $=$ off (2.5 V) DC offset voltage is measured with no signal at LINE OUT pin.	0	30	60	mV
Line amplifier	Line amplifier Line amplifier line mute characteristics (Line mute $=1.0 \mathrm{~V}$)	NR Pass = NR ON (1.0V), line mute $=$ mute on $(1.0 \mathrm{~V})$ By inputting $1 \mathrm{kHz},+1.0 \mathrm{dBv}$ signal to NR IN pin, attenuation is measured during line mute. (Using 1kHz BPF)	-	-83.0	-74.0	dB
HP volume	HP volume amplifier HP volume characteristics 1 (HP-VOL = 5.0V, $1 \mathrm{kHz},-11 \mathrm{dBv}$)	$\mathrm{HP}-\mathrm{VOL}=5.0 \mathrm{~V} \text {, NR Pass }=1.0 \mathrm{~V} \text {, }$ line mute $=2.5 \mathrm{~V}$ Full gain of HP volume amplifier at 1 kHz is measured.	17.5	19.0	20.5	dB
HP volume	HP volume amplifier HP volume characteristics 2 ($\mathrm{HP}-\mathrm{VOL}=2.0 \mathrm{~V}$, $1 \mathrm{kHz},-11 \mathrm{dBv}$)	$\mathrm{HP}-\mathrm{VOL}=2.0 \mathrm{~V} \text {, NR Pass }=1.0 \mathrm{~V} \text {, }$ line mute $=2.5 \mathrm{~V}$ Attenuation of HP volume amplifier at 1 kHz is measured.	-9.5	-8.0	-6.5	dB

Block	Item	Conditions	Min.	Typ.	Max.	Unit
HP volume	HP volume amplifier HP volume attenuation $(\mathrm{HP}-\mathrm{VOL}=0.0 \mathrm{~V}$, $1 \mathrm{kHz},+1.0 \mathrm{dBv}$)	$\mathrm{HP}-\mathrm{VOL}=0.0 \mathrm{~V} \text {, NR Pass }=1.0 \mathrm{~V} \text {, }$ line mute $=2.5 \mathrm{~V}$ Max. volume attenuation at 1 kHz is measured. (Using 1 kHz BPF)	-	-81.0	-77.0	dB
HP volume	HP volume amplifier HP-VOL signal handling $(1 \mathrm{kHz}, \mathrm{THD}=3 \% \text {, }$ $R L=150 \Omega$)	$\mathrm{HP}-\mathrm{VOL}=2.0 \mathrm{~V} \text {, NR Pass }=1.0 \mathrm{~V},$ line mute $=2.5 \mathrm{~V}, \mathrm{RL}=150 \Omega$ Output level when THD becomes 3\% by inputting 1 kHz signal	10.0	11.0	-	dBv
HP volume	HP volume amplifier HP-VOL total harmonic distortion $(1 \mathrm{kHz},-6.0 \mathrm{dBv} \text {, }$ $\mathrm{RL}=2.7 \mathrm{k} \Omega)$	$\mathrm{HP}-\mathrm{VOL}=2.0 \mathrm{~V}, \mathrm{NR}$ Pass $=1.0 \mathrm{~V}$, line mute $=2.5 \mathrm{~V}, \mathrm{RL}=150 \Omega$ By inputting $1 \mathrm{kHz},-11.0 \mathrm{dBv}$ (reference input level) signal, distortion is measured. (Distortion is measured as THD + N.)	-	0.40	1.2	\%
HP volume	HP volume amplifier HP-VOL S/N ratio ("A" weighting filter)	$\mathrm{HP}-\mathrm{VOL}=5.0 \mathrm{~V}$, NR Pass $=1.0 \mathrm{~V}$, line mute $=2.5 \mathrm{~V}$ Noise is measured using " A " weighting filter with no signal. (Measured value is shown in relative value to full gain.)	93.0	97.0	-	dB
HP volume	HP volume amplifier Output DC offset voltage (HP OUT pin)	$\mathrm{HP}-\mathrm{VOL}=5.0 \mathrm{~V} \text {, NR Pass }=1.0 \mathrm{~V} \text {, }$ line mute $=2.5 \mathrm{~V}$ DC offset voltage is measured with no signal at HP OUT pin.	0	125	250	mV
Level meter	Level meter amplifier Level meter characteristics 1 (NR IN = 1kHz, -11.0 dBv)	NR Pass = NR ON (1.0V), line mute $=$ mute off $(2.5 \mathrm{~V})$ By inputting $1 \mathrm{kHz},-11.0 \mathrm{dBv}$ signal, output DC voltage is measured at METER pin.	1.43	1.53	1.63	V
Level meter	Level meter amplifier Level meter characteristics 2 ($\mathrm{NR} \mathrm{IN}=1 \mathrm{kHz}$, -21.0 dBv)	NR Pass = NR ON (1.0V), line mute $=$ mute off $(2.5 \mathrm{~V})$ By inputting $1 \mathrm{kHz},-21.0 \mathrm{dBv}$ (-10.0 dB down) signal, output DC voltage is measured at METER pin.	0.46	0.53	0.60	V
Playback equalizer	120 $\mu \mathrm{s}-\mathrm{NS}$, A-DECK mode Playback reference input level (Playback equalizer amplifier gain)	A-DECK, $A-E Q=120 \mu \mathrm{~s}$, NORM-Speed mode By inputting $315 \mathrm{~Hz},-31.0 \mathrm{dBv}$ (reference input level) signal to PB IN pins (Pins 8/9), output level is measured.	-11.8	-11.2	-10.6	dBv
Playback equalizer	Playback equalizer amplifier PB-EQ frequency characteristics 1 120 $\mu \mathrm{s}$-NS, A-DECK mode	A-DECK, A-EQ $=120 \mu \mathrm{~s}$, NORM-Speed mode By inputting $5 \mathrm{kHz},-31.0 \mathrm{dBv}$ (reference input level) signal, relative deviation is measured at $120 \mu \mathrm{~s}$, 315 Hz .	-0.9	0.6	1.7	dB
Playback equalizer	Playback equalizer amplifier PB-EQ frequency characteristics 2 70 $\mu \mathrm{s}$-NS, A-DECK mode	A-DECK, A-EQ $=70 \mu \mathrm{~s}$, NORM-Speed mode By inputting $5 \mathrm{kHz},-31.0 \mathrm{dBv}$ (reference input level) signal, relative deviation is measured at $120 \mu \mathrm{~s}$, 315 Hz .	-4.7	-3.6	-2.3	dB

Block	Item	Conditions	Min.	Typ.	Max.	Unit
Playback equalizer	Playback equalizer amplifier PB-EQ frequency characteristics 3 $120 \mu \mathrm{~s}-\mathrm{HS}$, A-DECK mode	$A-D E C K, A-E Q=120 \mu \mathrm{~s}$, HIGH-Speed mode By inputting $5 \mathrm{kHz},-31.0 \mathrm{dBv}$ (reference input level) signal, relative deviation is measured at $120 \mu \mathrm{~s}$, 315 Hz .	-0.6	0.4	1.6	dB
Playback equalizer	Playback equalizer amplifier PB-EQ frequency characteristics 4 $70 \mu \mathrm{~s}-\mathrm{HS}$, A-DECK mode	A-DECK, A-EQ $=70 \mu \mathrm{~s}$, HIGH-Speed mode By inputting $5 \mathrm{kHz},-31$. 0 dBv (reference input level) signal, relative deviation is measured at $120 \mu \mathrm{~s}$, 315 Hz .	-4.7	-3.6	-2.3	dB
Playback equalizer	120 $\mu \mathrm{s}-\mathrm{NS}$, A-DECK mode PB-EQ signal handling ($1 \mathrm{kHz}, \mathrm{THD}=1 \%$, $\mathrm{RL}=2.7 \mathrm{k} \Omega$)	A-DECK, A-EQ = $120 \mu \mathrm{~s}$, NORM-Speed mode, RL $=2.7 \mathrm{k} \Omega$ Output level when THD becomes 1% by inputting 1 kHz signal	12.0	17.0	-	dB
Playback equalizer	120 $\mu \mathrm{s}-\mathrm{NS}$, A-DECK mode PB-EQ total harmonic distortion ($1 \mathrm{kHz}, 0.0 \mathrm{~dB}$, $\mathrm{RL}=2.7 \mathrm{k} \Omega$)	$\mathrm{A}-\mathrm{DECK}, \mathrm{A}-\mathrm{EQ}=120 \mu \mathrm{~s}$, NORM-Speed mode, RL $=2.7 \mathrm{k} \Omega$ By inputting $1 \mathrm{kHz},-31.0 \mathrm{dBv}$ (reference input level) signal, distortion is measured. (Distortion is measured as THD + N.)	-	0.08	0.6	\%
Playback equalizer	$120 \mu \mathrm{~s}-\mathrm{NS}$, A-DECK mode PB-EQ S/N ratio ("A" weighting filter)	A-DECK, A-EQ $=120 \mu \mathrm{~s}$, NORM-Speed mode, $\mathrm{Rg}=5.1 \mathrm{k} \Omega$ Noise is measured using " A " weighting filter with no signal. (Measured value is shown in relative value to reference level.)	58.8	63.8	-	dB
Playback equalizer	120 $\mu \mathrm{s}$-NS, A-DECK mode Output DC offset voltage (PB OUT pin)	A-DECK, $A-E Q=120 \mu \mathrm{~s}$, NORM-Speed mode DC offset voltage is measured with no signal at PB OUT pin.	10	180	350	mV
Playback equalizer	Playback equalizer amplifier DECK-A/B switch characteristics $120 \mu \mathrm{~s}-\mathrm{NS}$, B-DECK mode	B-DECK, B-EQ = NORM Tape, NORM-Speed mode By inputting $1 \mathrm{kHz},-31.0 \mathrm{dBv}$ (reference input level) signal to Pins 6 17, relative deviation is measured for A-DECK at $120 \mu \mathrm{~s}-\mathrm{NS}, 315 \mathrm{~Hz}$.	-1.5	0.0	1.5	dB
NR Pass amplifier	NR Pass amplifier NR Pass amplifier gain (PB IN $=1 \mathrm{kHz}$, -31.0 dBv)	NR Pass $=2.5 \mathrm{~V}, \mathrm{~A}-\mathrm{DECK}$, $120 \mu \mathrm{~s}-\mathrm{NS}$, line mute off By inputting $1 \mathrm{kHz},-31.0 \mathrm{dBv}$ (reference input level) signal to PB IN pins (Pins 8/9), relative value is measured to PB OUT.	3.2	4.7	6.2	dB
NR Pass amplifier	NR Pass amplifier Output DC offset voltage (LINE OUT pin)	NR Pass = 2.5 V , A-DECK, $120 \mu \mathrm{~s}-\mathrm{NS}$, line mute off DC offset voltage is measured with no signal at LINE OUT pin.	0	30	60	V

Block	Item	Conditions	Min.	Typ.	Max.	Unit
AMS/BS amplifier	AMS/BS amplifier AMS/BS frequency characteristics 1 AMS, $120 \mu \mathrm{~s}-\mathrm{NS}$, A-DECK mode	AMS, A-DECK, A-EQ $=120 \mu \mathrm{~s}$, NORM-Speed mode By inputting $3 \mathrm{kHz},-51.0 \mathrm{dBv}$ signal to PB IN pins (Pins $8 / 9$), difference between output level and level at PB OUT pin is measured.	35.3	36.8	38.3	dB
AMS/BS amplifier	AMS/BS amplifier AMS/BS frequency characteristics 2 AMS, $120 \mu \mathrm{~s}-\mathrm{NS}$, A-DECK mode	AMS, A-DECK, A-EQ $=120 \mu \mathrm{~s}$, NORM-Speed mode By inputting $600 \mathrm{~Hz},-51.0 \mathrm{dBv}$ signal to PB IN pins (Pins 8/9), deviation from output level of frequency characteristics 1 is measured.	-4.5	-3.0	-1.5	dB
AMS/BS amplifier	AMS/BS amplifier AMS/BS frequency characteristics 3 BS, $120 \mu \mathrm{~s}-\mathrm{NS}$, A-DECK mode	$B S, A-D E C K, A-E Q=120 \mu \mathrm{~s}$, NORM-Speed mode By inputting $1 \mathrm{kHz},-51.0 \mathrm{dBv}$ signal to PB IN pins (Pins $8 / 9$), difference between output level and level at PB OUT pin is measured.	45.9	47.4	48.9	dB
AMS/BS amplifier	AMS/BS amplifier AMS/BS frequency characteristics 4 BS, $120 \mu \mathrm{~s}-\mathrm{NS}$, A-DECK mode	$B S, A-D E C K, A-E Q=120 \mu \mathrm{~s}$, NORM-Speed mode By inputting $100 \mathrm{~Hz},-51.0 \mathrm{dBv}$ signal to PB IN pins (Pins 8/9), deviation from output level of frequency characteristics 3 is measured.	-5.8	-4.1	-2.4	dB
AMS/BS amplifier	AMS, $120 \mu \mathrm{~s}-\mathrm{NS}$, A-DECK mode Output DC offset voltage (AMS OUT pin)	AMS, A-DECK, A-EQ $=120 \mu \mathrm{~s}$, NORM-Speed mode DC offset voltage is measured with no signal at AMS OUT pin.	-1.95	0.05	2.05	V
AMS/BS amplifier	BS, 120 $\mathrm{s}-\mathrm{NS}$, A-DECK mode Output DC offset voltage (AMS OUT pin)	$B S, A-D E C K, A-E Q=120 \mu s$, NORM-Speed mode DC offset voltage is measured with no signal at AMS OUT pin.	-2.0	0.0	2.0	V

Electrical Characteristics Measurement Circuit

Example of Representative Characteristics

Recording equalizer frequency characteristics (Normal speed)

Recording equalizer frequency characteristics (Double speed)

Playback equalizer frequency characteristics

Recording equalizer calibration characteristics (REC CAL \& Gp CAL)

Recording equalizer calibration characteristics (Gp CAL)

Recording equalizer calibration characteristics (REC CAL)

REC MUTE charateristics

A.M.S./B.S. frequency characteristics

48PIN QFP (PLASTIC)

PACKAGE STRUCTURE

SONY CODE	QFP-48P-L04
EIAJ CODE	*QFP048-P-1212-B
JEDEC CODE	

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER / PALLADIUM
PLATING	
LEAD MATERIAL	COPPER / 42 ALLOY
PACKAGE WEIGHT	0.7 g

[^0]: Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

