Read/Write Amplifier (with Built-in Filters) for FDDs

For the availability of this product, please contact the sales office.

Description

The CXA3071N is a monolithic IC designed for use with three-mode Floppy Disk Drives, and contains a read circuit (with a four-mode filter system), a write circuit, an erase circuit, and a supply voltage detection circuit, all on a single chip.

Features

- Single 5V power supply
- All filter, write current and other characteristics can be set with a single external resistor.
- Filter system can be switched among four modes: $1 \mathrm{M}, 1.6 \mathrm{M} / 2 \mathrm{M}$, which are each inner track/outer track.
- Filter characteristics can be set to Chebyshev (1dB ripple) for $1.6 \mathrm{M}, 2 \mathrm{M}$ /inner track only, and to Butterworth for the other modes and a custom selection can be made between Chebyshev (1dB ripple) and Butterworth for $1.6 \mathrm{M}, 2 \mathrm{M} / \mathrm{inner}$ track only.
- $1 \mathrm{M} /$ outer track fo and the fc ratio for each mode can be customized.
- Preamplifier voltage gain can be set to 45 dB or 48 dB by switching the filter mode and inner/outer track.
- Preamplifier and filter output are monitored with the same pins. These pins are normally set to filter output, but the preamplifier output can be monitored by temporarily setting the SETR pin (Pin 20) to Low.
- Time domain filter can be switched between two modes: 1M, 1.6M/2M.
In addition, the pulse width can be customized.
- Write current can be switched among six modes according to the mode and inner/outer track setting. The current value can be customized for each mode.
- Erase current remains constant, and the current value can be customized.
- Damping resistor can be built in. Resistor can be customized between $2 \mathrm{k} \Omega$ and $15 \mathrm{k} \Omega$ in $1 \mathrm{k} \Omega$ steps.
- Supply voltage detection circuit
20 pin SSOP (Plastic)

Applications

Three-mode FDDs

Structure

Bipolar silicon monolithic IC
Absolute Maximum Ratings $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

- Supply voltage $\quad \mathrm{Vcc} \quad 7.0 \quad \mathrm{~V}$
- Digital signal input pin voltage

$$
-0.5 \text { to } V c c+0.3 \quad V
$$

- Power ON output applied voltage
$\mathrm{Vcc}+0.3 \mathrm{~V}$
- Erase output applied voltage $\mathrm{Vcc}+0.3 \mathrm{~V}$
- Write head applied voltage 15 V
- Power ON output current 7 mA
- Operating temperature Topr -20 to $+75 \quad{ }^{\circ} \mathrm{C}$
- Storage temperature Tstg -65 to $+150 \quad{ }^{\circ} \mathrm{C}$
- Allowable power dissipation

PD 375 mW

Operating Conditions

Supply voltage 4.4 to 6.0 V

[^0]Block Diagram and Pin Configuration

Pin Description

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Symbol	Pin voltage	Equivalent circuit	Description
1	HEAD1A	-	(1) (2)(3)(4)	Magnetic head inputs/outputs. Connect the recording/playback magnetic head to these pins, and connect the center tap to Vcc . When the logical voltage for Pin 15 (XS1) is Low, the HEAD1 system is active; when the logical voltage is High, the HEADO system is active.
2	HEAD1B	-		
3	HEADOA	-		
4	HEADOB	-		
5	GND	-		GND connection.
6	ERAO	-		Erase output for the HEADO system.
7	ERA1	-		Erase output for the HEAD1 system.
8	PON OUT	-		Reduced voltage detection output. This is an open collector that outputs a low signal when Vcc is below the specified value.
9	MONI- TORA	4.0 V during filter output 3.4 V during preamplifier output		MONITOR differential outputs. These pins are set to filter output during
10	MONI- TORB	4.0V during filter output 3.4 V during pre- amplifier output		output can be monitored by temporarily setting Pin 20 (SETR) to Low.

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Symbol	Pin voltage	Equivalent circuit	Description
11	XWD	-		Write data input. This pin is a Schmitttype input that is triggered when the logical voltage goes from High to Low.
12	RD	-		Read data output. This pin is active when the logical voltage of the write gate signal and the erase gate signal is High.
13	WG	0.5 Vcc during read		WG signal input. The write system becomes active when the logical voltage is High. The IC is in power saving mode when the logical voltage is Low. The read system becomes active when the logical voltage is Z.
14	XEG	-		XEG signal input. The erase system becomes active when the logical voltage is Low.
15	XS1	-		Head side switching signal input. The HEAD1 system is active when the logical voltage is Low, and the HEADO system is active when the logical voltage is High, but only when the logical voltage for the WG signal is Z and of the XEG signal is High.
16	OTF	-		Filter inner track/outer track mode control. Outer track mode is selected when the logical voltage is High.
17	XHD	-		Filter, time domain filter and write current $1 \mathrm{M} / 2 \mathrm{M}$ mode control. $1.6 \mathrm{M} / 2 \mathrm{M}$ mode is selected when the logical voltage is Low.
18	X360	-		Filter, time domain filter and write current $1.6 \mathrm{M} / 2 \mathrm{M}$ mode control. 1.6 M mode is selected when the logical voltage is Low.
19	Vcc	-		Power supply (5V) connection.

Pin No.	Symbol	Pin voltage		Equivalent circuit	Description
20	SETR	3.8 V			

Electrical Characteristics

Current Consumption
$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=5 \mathrm{~V}\right)$

Item	Symbol	Conditions	Measurement circuit	Measurement point	Min.	Typ.	Max.	Unit
Current consumption in read mode	ICCR	$\mathrm{WG}=$ "Z"	-	-	15.0	25.0	35.0	mA
Current consumption in write/erase mode	ICCWE	$\mathrm{WG}=$ "H", XEG = "L"	-	-	11.0	17.0	23.0	mA
Current consumption in power saving mode	ICCPS	$\mathrm{WG}=$ "L"	-	-	-	1.2	2.0	mA

Power Supply Monitoring System
$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

Item	Symbol	Conditions	Measurement circuit	Measurement point	Min.	Typ.	Max.	Unit
Power supply ON/OFF detector threshold voltage	VTH		-	-	3.5	3.9	4.3	V
Power ON output saturation voltage	VSP	Vcc $=3.5 \mathrm{~V}$ $\mathrm{I}=1 \mathrm{~mA}$	-	-	-	-	0.5	V

Read System
$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=5 \mathrm{~V}\right)$

Item	Symbol	Conditions	Measurement circuit	Measurement point	Min.	Typ.	Max.	Unit
Preamplifier voltage gain 1M/outer track	GVLO	$\begin{aligned} & \mathrm{f}=100 \mathrm{kHz}, \mathrm{OTF}=\mathrm{"H} ", \\ & \mathrm{XHD}=\mathrm{H} \text { ", X360 = "X" } \end{aligned}$	1	A, B	43.1	45.0	46.6	dB
Preamplifier voltage gain 1M/inner track	GVLI	$\begin{aligned} & \mathrm{f}=100 \mathrm{kHz}, \mathrm{OTF}=\text { "L", } \\ & \mathrm{XHD}=" \mathrm{H} ", \mathrm{X} 360=" \mathrm{X} " \end{aligned}$	1	A, B	46.1	48.0	49.6	dB
Preamplifier voltage gain 1.6M, 2M/ outer track	GVHO	$\begin{aligned} & f=100 \mathrm{kHz}, \mathrm{OTF}=\mathrm{HH} ", \\ & \mathrm{XHD}=\text { "L", X360 = "X" } \end{aligned}$	1	A, B	43.1	45.0	46.6	dB
Preamplifier voltage gain 1.6M, 2M/ inner track	GVHI	$\begin{aligned} & \mathrm{f}=100 \mathrm{kHz}, \mathrm{OTF}=\text { "L", } \\ & \mathrm{XHD}=\text { "L", X360 = "X" } \end{aligned}$	1	A, B	46.1	48.0	49.6	dB
Preamplifier frequency response	BWO	$\mathrm{Gv} / \mathrm{Gv} 0=-3 \mathrm{~dB}$	1	A, B	5	-	-	MHz
Preamplifier input conversion noise voltage	ENO	$\begin{aligned} & \mathrm{Bw}=400 \mathrm{~Hz} \text { to } 1 \mathrm{MHz}, \\ & \mathrm{~V} \mathrm{I}=0 \end{aligned}$	1	A, B	-	2.0	2.9	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$

Read System
$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=5 \mathrm{~V}\right)$

Item	Symbol	Conditions	Measurement circuit	Measurement point	Min.	Typ.	Max.	Unit
Filter output voltage amplitude	VOF		1	A, B	1.4	-	-	Vp-p
Time domain filter monostable multivibrator pulse width	T1	X360 = "X", XHD = "H" (1M mode)	1	C, D	2.25	2.50	2.75	$\mu \mathrm{s}$
		X360 = "X", XHD = "L" (1.6M/2M mode)	1	C, D	1.16	1.29	1.42	$\mu \mathrm{s}$
Read data pulse width	T2		1	D	300	400	500	ns
Read data output low output voltage	VOL	$\mathrm{loL}=2 \mathrm{~mA}$	1	D	-	-	0.5	V
Read data output high output voltage	VOH	$\mathrm{IOH}=-0.4 \mathrm{~mA}$	1	D	2.8	-	-	V
Read data output*1 rise time	tr	$\begin{aligned} & \mathrm{RL}=2 \mathrm{k} \Omega \\ & \mathrm{CL}=20 \mathrm{pF} \end{aligned}$	1	D	-	-	100	ns
Read data outpu** ${ }^{* 1}$ fall time	tf	$\begin{aligned} & \mathrm{RL}=2 \mathrm{k} \Omega \\ & \mathrm{CL}=20 \mathrm{pF} \end{aligned}$	1	D	-	-	100	ns
Peak shift*2	PS	$\begin{aligned} & \hline \text { VI }=0.25 \mathrm{mV} \text { p-p to } \\ & 3.5 \mathrm{mVp}-\mathrm{p} \\ & \mathrm{X} 360=\text { "H", XHD = "L" } \\ & \text { OTF }=\text { "L" } \\ & \mathrm{f}=125 \mathrm{kHz}, \\ & \text { 2M/inner track mode } \end{aligned}$	1	D	-	-	1	\%

*1 Read data output: 0.5 V to 2.4 V
*2 Signal input level
$1 \mathrm{M}, 1.6 \mathrm{M}, 2 \mathrm{M} /$ outer track: $\mathrm{V}_{\mathrm{I}}=0.25 \mathrm{mVp}-\mathrm{p}$ to $5 \mathrm{mVp}-\mathrm{p}$
$1 \mathrm{M}, 1.6 \mathrm{M}, 2 \mathrm{M} /$ inner track: $\mathrm{V} \mathrm{I}=0.25 \mathrm{mVp}-\mathrm{p}$ to $3.5 \mathrm{mVp}-\mathrm{p}$

Fig. 1. 1st and 2nd monostable multivibrator pulse width precision and peak shift measurement conditions

- 1st monostable multivibrator pulse width precision

When X360 = "X" and XHD = "H":

$$
\text { ETM1 }=\left(\frac{\mathrm{T}_{1}}{2.5 \mu \mathrm{~s}}-1\right) \times 100[\%]
$$

When X360 = "X" and XHD = "L":

$$
\mathrm{ETM}^{\prime}=\left(\frac{\mathrm{T}_{1}}{1.29 \mu \mathrm{~s}}-1\right) \times 100[\%]
$$

- 2 nd monostable multivibrator pulse width $=\mathrm{T}_{2}$
- Peak shift

$$
P S=\frac{1}{2}\left|\frac{T_{A}-T_{B}}{T_{A}+T_{B}}\right| \times 100[\%]
$$

Read System (Filters)
$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=5 \mathrm{~V}\right)$

Item		Symbol	Conditions	Measurement circuit	Measurement point	Min.	Typ.	Max.	Unit
1M outer track	Peak frequency	fo1	$\begin{aligned} & \text { WG = "Z", X360 = "X" } \\ & \text { XHD = "H" } \\ & \text { OTF = "H" } \end{aligned}$	1	A, B	165.6	184.0	202.4	kHz
	Peak voltage gain*3	Gp1	Refer to Fig. 1 at f01	1	A, B	4.1	6.0	7.6	dB
	Frequency response (1)	G_{11}	Refer to Fig. 1 at $1 / 3 f_{01}$	1	A, B	-7.4	-6.9	-6.4	dB
	Frequency response (2)	G_{12}	Refer to Fig. 1 at $3 \mathrm{f}_{01}$	1	A, B	-24.9	-23.0	-21.4	dB
1M inner track	Peak frequency	fo2	$\begin{aligned} & \text { WG = "Z", X360 = "X" } \\ & \text { XHD = "H" } \\ & \text { OTF = "L" } \end{aligned}$	1	A, B	177.2	196.9	216.6	kHz
	Peak voltage gain*3	Gp2	Refer to Fig. 1 at foz	1	A, B	4.1	6.0	7.6	dB
	Frequency response (1)	G 21	Refer to Fig. 1 at $1 / 3$ fo2	1	A, B	-7.4	-6.9	-6.4	dB
	Frequency response (2)	G22	Refer to Fig. 1 at 3 f 02	1	A, B	-24.9	-23.0	-21.4	dB
1.6M/ 2M outer track	Peak frequency	f03	$\begin{aligned} & \text { WG = "Z", X360 = "X" } \\ & \text { XHD = "L" } \\ & \text { OTF = "H" } \end{aligned}$	1	A, B	311.3	345.9	380.5	kHz
	Peak voltage gain*3	$G p 3$	Refer to Fig. 1 at fo3	1	A, B	4.2	6.1	7.7	dB
	Frequency response (1)	G31	Refer to Fig. 1 at $1 / 3$ f03	1	A, B	-7.4	-6.9	-6.4	dB
	Frequency response (2)	G32	Refer to Fig. 1 at $3 f 03$	1	A, B	-25.3	-23.4	-21.8	dB
$\begin{aligned} & 1.6 \mathrm{M} / \\ & 2 \mathrm{M} \\ & \text { inner } \\ & \text { track } \end{aligned}$	Peak frequency	fo4	$\begin{aligned} & \text { WG = "Z", X360 = "X" } \\ & \text { XHD = "L" } \\ & \text { OTF = "L" } \end{aligned}$	1	A, B	346.2	384.6	423.0	kHz
	Peak voltage gain*3	Gp4	Refer to Fig. 1 at fo4	1	A, B	5.8	7.7	9.3	dB
	Frequency response (1)	G41	Refer to Fig. 1 at $1 / 3$ fo4	1	A, B	-8.3	-7.8	-7.3	dB
	Frequency response (2)	G42	Refer to Fig. 1 at 3 f 04	1	A, B	-37.8	-35.9	-34.3	dB

*3 Gpn = 20 Log10 (VFilterout/VPreout)
VFilterout = Filter differential output voltage
($\mathrm{N}=1$ to 4).

($\mathrm{n}=1$ to 4)
Fig. 2. Filter frequency response measurement conditions

Write/Erase System

Item	Symbol	Conditions	Measurement circuit	Measurement point	Min.	Typ.	Max.	Unit
Damping resistor precision	RD	$\begin{aligned} & \mathrm{VCc}=0 \mathrm{~V} \\ & \mathrm{SW} 1=\mathrm{b} \end{aligned}$	2	$\begin{aligned} & \mathrm{A}^{\prime}, \mathrm{B}^{\prime} \\ & \mathrm{C}^{\prime}, \mathrm{D}^{\prime} \end{aligned}$	-20	-	+20	\%
1M/outer track write current	IWLO	$\begin{aligned} & \text { WG = "H", OTF = "H" } \\ & \text { XHD = "H", X360 = "X" } \end{aligned}$	2	$\begin{aligned} & \mathrm{A}, \mathrm{~B} \\ & \mathrm{C}, \mathrm{D} \end{aligned}$	8.83	9.5	10.17	mAo-p
1M/inner track write current	IWLI	$\begin{aligned} & \text { WG = "H", OTF = "L" } \\ & \text { XHD = "H", X360 = "X" } \end{aligned}$	2	$\begin{aligned} & \mathrm{A}, \mathrm{~B} \\ & \mathrm{C}, \mathrm{D} \end{aligned}$	6.62	7.12	7.62	mAo-p
1.6M/outer track write current	IWMO	$\begin{aligned} & \text { WG = "H", OTF = "H" } \\ & \text { XHD = "L", X360 = "L" } \end{aligned}$	2	$\begin{aligned} & \mathrm{A}, \mathrm{~B} \\ & \mathrm{C}, \mathrm{D} \end{aligned}$	7.44	8.0	8.56	mAo-p
1.6M/inner track write current	IWMI	$\begin{aligned} & \text { WG = "H", OTF = "L" } \\ & \text { XHD = "L", X360 = "L" } \end{aligned}$	2	$\begin{aligned} & \mathrm{A}, \mathrm{~B} \\ & \mathrm{C}, \mathrm{D} \end{aligned}$	5.95	6.4	6.85	mAo-p
2M/outer track write current	IWHO	$\begin{aligned} & \text { WG = "H", OTF = "H" } \\ & \text { XHD = "L", X360 = "H" } \end{aligned}$	2	$\begin{aligned} & \mathrm{A}, \mathrm{~B} \\ & \mathrm{C}, \mathrm{D} \end{aligned}$	4.18	4.5	4.82	mAo-p
2M/inner track write current	IWHI	$\begin{aligned} & \text { WG = "H", OTF = "L" } \\ & \text { XHD = "L", X360 = "H" } \end{aligned}$	2	$\begin{aligned} & \mathrm{A}, \mathrm{~B} \\ & \mathrm{C}, \mathrm{D} \end{aligned}$	2.76	2.97	3.18	mAo-p
Write current output unbalance	DW	$W \mathrm{C}=$ " H "	2	$\begin{aligned} & \mathrm{A}, \mathrm{~B} \\ & \mathrm{C}, \mathrm{D} \end{aligned}$	-1	-	+1	\%
Head I/O pin leak current for writes	ILKW	$W G=$ "H"	2	$\begin{aligned} & \mathrm{A}, \mathrm{~B} \\ & \mathrm{C}, \mathrm{D} \end{aligned}$	-	-	10	$\mu \mathrm{A}$
Write head pin current at saturation	ISW	$\begin{aligned} & \text { WG = "H", OTF = "H" } \\ & \text { XHD = "H", X360 = "X" } \\ & \text { VSW = 1V, SW2 = b } \end{aligned}$	2	$\begin{aligned} & \mathrm{A}, \mathrm{~B} \\ & \mathrm{C}, \mathrm{D} \end{aligned}$	8.45	9.5	10.55	mAo-p
Erase current	IE	XEG = "L"	2	E, F	5.40	6.0	6.60	mA
Erase current output pin leak current	ILKE	XEG = "L"	2	E, F	-	-	10	$\mu \mathrm{A}$

Logic Input Block
$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=5 \mathrm{~V}\right)$

Item	Symbol	Conditions	Measurement circuit	Measurement point	Min.	Typ.	Max.	Unit
Digital signal input low input voltage	VLD		2	I, J, K, L, M	-	-	0.8	V
Digital signal input high input voltage	VHD		2	I, J, K, L, M	2.0	-	-	V
Schmitt-type digital signal input low input voltage	VLSD		2	G	-	-	0.8	V
Schmitt-type digital signal input high input voltage	VHSD		2	G	2.0	-	-	V
WG pin digital signal input high input voltage	VMHD		2	H	0.7 Vcc	-	-	V
WG pin digital signal input low input	VMLD		2	H	-	-	0.3 VCc	V
Digital signal input low input current	ILD	VL $=0 \mathrm{~V}$	2	G, H, I, J, K, L, M	-100	-	-	$\mu \mathrm{A}$
Digital signal input high input current	IHD	VH $=5 \mathrm{~V}$	2	G, H, I, $\mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{M}$	-	-	100	$\mu \mathrm{~A}$

Electrical Characteristics Measurement Circuit 1

Note) Unless otherwise specified, switches are assumed to be set to "a".
CR time constant of external comparator input stage is equivalent to the time constant of comparator input stage within the IC.

Electrical Characteristics Measurement Circuit 2

Note) Unless otherwise specified, switches are assumed to be set to "a".

Description of Operation

(1) Read system

Preamplifier

The preamplifier amplifies input signals.
The voltage gain can be switched depending on the settings of Pins 16, 17 and 18.

Filter

The filter differentiates the signals amplified by the preamplifier. The high-band noise components are attenuated by the low-pass filter.
The filters can be switched among four modes, depending on the settings of Pins 16, 17 and 18.
In 1M/outer track mode, the peak frequency fo1 is fixed and used as a reference (1.00), and fo for the other three modes is switched by the internal settings of the IC.

Active filter block

The center frequency $f_{0 B}$ of the BPF is fixed to 1.2 times the cutoff frequency f_{0} of the LPF. The LPF characteristics are set to Chebyshev (1dB ripple) for $1.6 \mathrm{M}, 2 \mathrm{M} /$ inner track mode only, and the Butterworth for all other modes.

Pin16 OTF	Pin17 XHD	Pin18 X360	LPF characteristics	fo ratio
H	H	X	1M/outer track: Butterworth	1.00
L	H	X	1M/inner track: Butterworth	1.07
H	L	L	1.6M/outer track: Butterworth	1.88
L	L	L	1.6M/inner track: Chebyshev 1dB ripple	2.09
H	L	H	2M/outer track: Butterworth	1.88
L	L	H	2M/inner track: Chebyshev 1dB ripple	2.09

Monitor switching

Monitor block configuration

The monitor pins are used for both the preamplifier output and filter output. These pins are set to filter output during normal read mode, but the preamplifier output can be monitored by temporarily setting the SETR pin (Pin 20) to Low.
The monitored contents are returned from the preamplifier output to the filter output by switching to write mode ($\mathrm{WG}=\mathrm{Z} \rightarrow$ High).
Note that the specifications for inputting a low signal to the SETR pin are the same as for the TTL input pin, but an open collector output (or open drain output) should be used while inputting the signal.

SETR (Pin 20)	MONITORA (Pin 9)	MONITORB (Pin 10)	Monitor mode
z	FILOUTA	FILOUTB	Filter output
Z	PREOUTA	PREOUTB	Preamplifier output

Comparator

The comparator detects the crosspoint of the filter differential output.

Time domain filter

The time domain filter converts the comparator output to read data.
This filter is equipped with two monostable multivibrators. 1st monostable multivibrator eliminates unnecessary pulses, and 2nd monostable multivibrator determines the pulse width of the read data.
Note that the 1st monostable multivibrator pulse width T1 is fixed internally.
T 1 can be switched as follows by the settings of Pins 17 and 18:

$$
\begin{aligned}
& \text { When } \mathrm{XHD}=\text { "H" and } \mathrm{X} 360=\text { "X": T1 }(1 \mathrm{M})=2500[\mathrm{~ns}] \\
& \text { When } \mathrm{XHD}=\text { "L" and } \mathrm{X} 360=\text { "L" or } \\
& \mathrm{XHD}=\mathrm{LL} \text { and } \mathrm{X} 360=\text { "H": } \mathrm{T} 1(1.6 \mathrm{M} / 2 \mathrm{M})=1290[\mathrm{~ns}] \\
& \text { The pulse width for 2nd monostable multivibrator is fixed at } 400[\mathrm{~ns}] \text {. }
\end{aligned}
$$

(2) Write system

Write data input through Pin 11 is frequency-divided by the T flip-flop and generates the recording current for the head. The recording current can be switched by the settings of Pins 17 and 18 . Note that the write current Iw is fixed internally for each mode.
Furthermore, the inner/outer track write current Iw can be changed for each mode by switching Pin 16. However, the current ratio between the inner and outer tracks is fixed.

(3) Erase current

The erase current $l \mathrm{I}$ is fixed internally.
Pins 6 and 7 are constant current outputs.

(4) Power ON/OFF detection system

The power ON/OFF detection system detects a reduced voltage in the supply voltage.
When Vcc is below the specified value, the write system and erase system cease operation, disabling the write and erase functions.

Notes on Operation

- Select the voltage gain so that the preamplifier output amplitude is 1 Vp -p or less. If the preamplifier output amplitude exceeds 1 Vp -p, the filter output waveform becomes distorted.
- Observe the following point when mounting this device.
- The GND should be as large as possible.
- Connect a Vcc decoupling capacitor of about $0.1 \mu \mathrm{~F}$ as close to the device as possible.

Application Circuit

Note) When using two modes (1M and 2M), connect X360 (Pin 18) to Vcc and set XHD (Pin 17) high or low to switch modes.

Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

Filter Frequency Response

The LPF characteristics are set to Chebyshev (1dB ripple) for $1.6 \mathrm{M}, 2 \mathrm{M} /$ inner track mode only, and to Butterworth for other modes. The 1.6M and 2M characteristics and fc ratio are identical.

fcn

$$
(\mathrm{n}=1,2,3)
$$

(High-band noise cutoff)
(Comprehensive characteristics)

The BPF center frequency foB is fixed at 1.2 times the LPF cutoff frequency.

$$
\mathrm{fob}=1.2 \mathrm{fc}
$$

In the comprehensive characteristics, the relationship between the peak frequencies fo and fc is as follows, depending on the differences of the LPF type:
Butterworth characteristics

```
fcn = 1.28fon(n=1, 2, 3)
```

Chebyshev (1 dB ripple characteristics) $\mathrm{fc} 4=1.09 \mathrm{f}_{0} 4$

Custom Selection of Filters

The LPF cutoff frequency fc in 1M/outer track mode can be customized. In addition, assuming the LPF cutoff frequency value as 1.00 , the fc ratio can be selected for the other three modes.
In addition, the LPF characteristics are set to Chebyshev (1dB ripple) for $1.6 \mathrm{M}, 2 \mathrm{M} / \mathrm{inner}$ track mode only, and to Butterworth for the other modes. However, a custom selection can be made between Chebyshev (1dB ripple) and Butterworth for 1.6M, 2M/inner track mode only. (However, the 1.6 M and 2 M characteristics and fc ratio are identical.)
Note that the BPF center frequency fob is fixed at 1.2 times fc.

Mode	LPF type	fc ratio when fc1 is assumed as 1
1M/outer track	Butterworth	1.0
1 M/inner track	Butterworth	$1.07,1.14,1.23,1.33,1.45,1.60,2.00$
$1.6 \mathrm{M}, 2 \mathrm{M} /$ outer track	Butterworth	$1.23,1.33,1.39,1.45,1.52,1.60,1.68$,
$1.6 \mathrm{M}, 2 \mathrm{M} /$ inner track	Butterworth	$1.23,1.88,2.00,2.13,2.29,2.46,2.67$

* The boxed ratio indicates the setting for the CXA3071N.

Write Current Setting Method

Assuming the outer track as 1.00, the write current ratio is fixed within the IC for each mode.
The write current for the outer track is fixed within the IC.
The setting is for the outer track current when OTF is High, and for the inner track current when OTF is Low.

Track	Write current inner track setting ratio
1 M mode	$1.00,0.92,0.86,0.80,0.75,0.71,0.66,0.63$
1.6 M mode	$1.00,0.92,0.86,0.80,0.75,0.71,0.66,0.63$
2 M mode	$1.00,0.92,0.86,0.80,0.75,0.71,0.66,0.63$

[^1]
Example of Representative Characteristics

Normalized preamplifier voltage gain and phase vs. Frequency

1.6M, 2M/outer track

1.6M, 2M/inner track

Normalized filter peak frequency Nfo vs. Ambient temperature Ta

NT1 — Normalized 1st monostable multivibrator pulse width

Normalized preamplifier voltage gain +
filter voltage gain NGv vs. Supply voltage Vcc 1.50

Normalized filter peak frequency Nfo vs. Supply voltage Vcc

Normalized 1st monostable multivibrator pulse width NT1 vs. Supply voltage Vcc

Normalized read data pulse width NT2 vs. Ambient temperature Ta

Normalized write current Nlw vs. Ambient temperature Ta

Normalized erase current NIE vs. Ambient temperature Ta

Normalized read data pulse width NT2 vs. Supply voltage Vcc

Normalized write current Nlw vs. Supply voltage Vcc

Normalized erase current NIE vs. Supply voltage Vcc

Package Outline Unit: mm
20PIN SSOP (PLASTIC)

DETAIL A
NOTE: Dimension "*" does not include mold protrusion.
PACKAGE STRUCTURE

SONY CODE	SSOP-20P-L01
EIAJ CODE	SSOP020-P-0044
JEDEC CODE	-

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER / PALLADIUM PLATING
LEAD MATERIAL	COPPER / 42 ALLOY
PACKAGE WEIGHT	0.1 g

NOTE : PALLADIUM PLATING
This product uses S-PdPPF (Sony Spec.-Palladium Pre-Plated Lead Frame).

[^0]: Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

[^1]: * The boxed ratio indicates the setting for the CXA3071N.

