All Band TV Tuner IC with On-chip PLL
For the availability of this product, please contact the sales office.

Description

The CXA3085AN is a monolithic TV tuner IC which integrates local oscillator and mixer circuits for VHF band, local oscillator and mixer circuits for UHF band, an IF amplifier and a tuning PLL onto a single chip, enabling further miniaturization of the tuner.

Features

- Low noise figure
- Low power consumption (5 V, 54 mA typ.)
- On-chip tuning PLL (3 -wire bus format)
- Selection of frequency steps $31.25 \mathrm{kHz}, 50 \mathrm{kHz}$ and 62.5 kHz
- On-chip 4-output band switch
- SSOP 30-pin package

Applications

- TV tuners
- VCR tuners
- CATV tuners

Structure

Bipolar silicon monolithic IC

Absolute Maximum Ratings ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)
$\begin{array}{cccc}\text { - Supply voltage } & \mathrm{Vcc} 1, \mathrm{Vcc} 2 & -0.3 \text { to }+5.5 & \mathrm{~V} \\ \mathrm{Vcc} 3 & -0.3 \text { to }+10.0 & \mathrm{~V}\end{array}$

- Storage temperature

$$
\text { Tstg } \quad-55 \text { to }+150 \quad{ }^{\circ} \mathrm{C}
$$

- Allowable power dissipation
PD 880 mW
(when mounted on a substrate)

Operating Conditions

- Supply voltage Vcc1, Vcc2 4.75 to 5.3 V

Vcc3 4.75 to $9.45 \quad V$

- Operating temperature

Topr $\quad-20$ to $+75 \quad{ }^{\circ} \mathrm{C}$

Note) Electrostatic discharge strength is weak, and care should be taken in handling this IC.

Block Diagram and Pin Configuration

Pin Description

$\begin{aligned} & \hline \text { Pin } \\ & \text { No. } \end{aligned}$	Symbol	Equivalent circuit	Pin voltage (V)	Description
1	CL		-	Clock input.
2	DA		-	Data input.
3	CE		$\begin{gathered} 1.25 \\ \text { (when open) } \end{gathered}$	Enable pin.
4	FMT		$\begin{aligned} & \text { ON : } 4.9 \\ & \text { OFF : } 0 \end{aligned}$	4 : Output for FM TRAP. 5 : Power supply output for VL band. 6 : Power supply pin for VH band. 7 : Power supply output for UHF band. The selected band pin goes High.
5	BVL			
6	BVH			
7	BU			
8	Vcc1			Analog circuit power supply.
9	MIXout1			Mixer outputs.
10	MIXout2			
11	GND1	-	-	Analog circuit GND.

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Symbol	Equivalent circuit	Pin voltage (V)	Description
12	BYP		2.5 (when open)	VHF input GND and FMT/BU data switching.
13	VHFin		$\begin{gathered} 2.3 \\ (\mathrm{VHF}) \\ 0 \\ (\mathrm{UHF}) \end{gathered}$	VHF input. The input format is unbalanced input.
14	UHFin1		$\begin{gathered} 0 \\ \text { (VHF) } \\ 2.3 \\ (\mathrm{UHF}) \end{gathered}$	UHF inputs. The input method can be selected from balanced input or unbalanced input.
15	UHFin2		$\begin{gathered} \hline 0 \\ \text { (VHF) } \\ 2.3 \\ (\mathrm{UHF}) \end{gathered}$	
16	VOSC1		$\begin{gathered} \hline 3 \\ (\mathrm{VHF}) \\ 3.1 \\ (\mathrm{UHF}) \end{gathered}$	External resonance circuit connection for VHF oscillator.
18	VOSC2		$\begin{gathered} 4.0 \\ (\mathrm{VHF}) \\ 5.0 \\ \text { (UHF) } \end{gathered}$	
17	GND		-	GND
19	UOSC1	(19) (21)	$\begin{gathered} 3.2 \\ \text { (VHF) } \\ 2.9 \\ \text { (UHF) } \end{gathered}$	External resonance circuit connection for UHF oscillator.
21	UOSC2		$\begin{gathered} 3.2 \\ \text { (VHF) } \\ 2.9 \\ (\mathrm{UHF}) \end{gathered}$	
20	MS		1.5 (when open)	Frequency step mode selection. Five modes can be selected according to the applied voltage.

$\begin{aligned} & \hline \text { Pin } \\ & \text { No. } \end{aligned}$	Symbol	Equivalent circuit	Pin voltage (V)	Description
22	Vcc2	-	-	PLL circuit power supply.
23	GND2	-	-	PLL circuit GND.
24	NC	-	-	No connected.
25	IFOUT		2.3	IF output.
26	LOCK		$\begin{gathered} 5.0 \\ \text { (Lock) } \\ \\ 0.2 \\ \text { (UNLock) } \end{gathered}$	LOCK detection. High when locked, Low when unlocked.
27	CPE		0.6	NPN transistor connection for varicap diode drive.
28	CPO		2.0	Charge pump output. Connect a loop filter.
29	REFOSC		4.3	Crystal connection for reference oscillator.
30	Vcc3		-	Power supply for external supply.

Electrical Characteristics See the Electrical Characteristics Measurement Circuit.
Circuit Current
(Vcc=5 V, Ta=25 ${ }^{\circ} \mathrm{C}$)

Item	Symbol	Measurement conditions	Min.	Typ.	Max.	Unit
Circuit current A	Alccv	Vcc1 current, Band switch output open during VHF operation	30	41	55	mA
	Alccu	Vcc1 current, Band switch output open during UHF operation	31	42	56	mA
Circuit current D	DIcc	Vcc2 current	7	11	15	mA

OSC/MIX/IF Amplifier Block

Item	Symbol	Measurement conditions	Min.	Typ.	Max.	Unit
Conversion gain *1	CG1	VHF operation $\mathrm{fRF}^{\text {a }} 55 \mathrm{MHz}$	21	24	27	dB
	CG2	VHF operation $\mathrm{fRF}=360 \mathrm{MHz}$	22	25	28	dB
	CG3	UHF operation $\mathrm{fRF}=360 \mathrm{MHz}$	26	29	32	dB
	CG4	UHF operation $\mathrm{fRF}=800 \mathrm{MHz}$	27	30	33	dB
Noise figure ${ }^{* 1}$, *2	NF1	VHF operation $\mathrm{fRF}^{\text {a }} 555 \mathrm{MHz}$		12	15	dB
	NF2	VHF operation $\mathrm{fRF}=360 \mathrm{MHz}$		11	14	dB
	NF3	UHF operation $\mathrm{fRF}=360 \mathrm{MHz}$		8.5	12.5	dB
	NF4	UHF operation $\mathrm{fRF}=800 \mathrm{MHz}$		9.5	13.5	dB
1 \% cross modulation *1, *3	CM1	VHF operation $\mathrm{fD}=55 \mathrm{MHz}, \mathrm{fuD}= \pm 12 \mathrm{MHz}$	97	101		$\mathrm{dB} \mu$
	CM2	VHF operation $\mathrm{fD}=360 \mathrm{MHz}, \mathrm{fuD}= \pm 12 \mathrm{MHz}$	96	100		$\mathrm{dB} \mu$
	CM3	UHF operation $\mathrm{fD}=360 \mathrm{MHz}, \mathrm{fuD}= \pm 12 \mathrm{MHz}$	92	96		$\mathrm{dB} \mu$
	CM4	UHF operation $\mathrm{fD}=800 \mathrm{MHz}, \mathrm{fuD}= \pm 12 \mathrm{MHz}$	88	92		$\mathrm{dB} \mu$
Maximum output power	Pomax	50Ω load saturation output	+7	+10		dBm
Switch ON drift *4	$\Delta \mathrm{fsw} 1$	VHF operation fosc $=100 \mathrm{MHz}$ Δf from 3 s to 3 min after switch ON			± 300	kHz
	$\Delta \mathrm{fsw} 2$	VHF operation fosc $=405 \mathrm{MHz}$ Δf from 3 s to 3 min after switch ON			± 400	kHz
	$\Delta \mathrm{fsw} 3$	UHF operation fosc $=405 \mathrm{MHz}$ Δf from 3 s to 3 min after switch ON			± 400	kHz
	$\Delta \mathrm{fsw} 4$	UHF operation fosc $=845 \mathrm{MHz}$ Δf from 3 s to 3 min after switch ON			± 500	kHz
Supply voltage drift $* 4$	$\Delta \mathrm{fst} 1$	VHF operation fosc $=100 \mathrm{MHz}$ $\Delta \mathrm{f}$ when Vcc 5 V changes $\pm 5 \%$			± 150	kHz
	$\Delta \mathrm{fst} 2$	VHF operation fosc $=405 \mathrm{MHz}$ Δf when Vcc 5 V changes $\pm 5 \%$			± 250	kHz
	$\Delta \mathrm{fst} 3$	UHF operation fosc $=405 \mathrm{MHz}$ Δf when Vcc 5 V changes $\pm 5 \%$			± 200	kHz
	$\Delta \mathrm{fst} 4$	UHF operation fosc $=845 \mathrm{MHz}$ Δf when Vcc 5 V changes $\pm 5 \%$			± 250	kHz

[^0]
PLL Block

Item	Symbol	Measurement conditions	Min.	Typ.	Max.	Unit
CL and DA pins						
"H" level input voltage	VIH		3		Vcc	V
"L" level input voltage	VIL		GND		1.5	V
"H" level input current	ІІ	$\mathrm{V}_{1} \mathrm{~F}=\mathrm{Vcc}$		0	-0.1	$\mu \mathrm{A}$
"L" level input current	IL	$\mathrm{VIL}=\mathrm{GND}$		-1	-2	$\mu \mathrm{A}$
CE pin						
"H" level input voltage	VIне		3		Vcc	V
"L" level input voltage	VILE		GND		1.5	V
"H" level input current	lihe	VIHE=Vcc		100	130	$\mu \mathrm{A}$
"L" level input current	lle	VILE=GND		-30	-45	$\mu \mathrm{A}$
CPO (charge pump)						
Output current	Icpo			± 50	± 75	$\mu \mathrm{A}$
Leak current	LeakCP				30	nA
LOCK						
" H " output voltage	VLock	When locked	Vcc-0.5		Vcc	V
"L" output voltage	VLOCKL	When unlocked	0		0.5	V
REFOSC						
Oscillator frequency range	Fxtosc		3		12	MHz
Input capacitance	Cxtosc		17.5	19	20.5	pF
Drive level	Vxtosc		200	400		mV
BVL, BVH, BU (Band SW)						
Output current	Ibs1	When ON			-25	mA
Saturation voltage	Vsat1	When ON Sink current $=20 \mathrm{~mA}$		100	200	mV
Leak current	LeakBS1	When OFF		0.5	3	$\mu \mathrm{A}$
FMT (Band SW)						
Output current	lss2	When ON			-7	mA
Saturation voltage	Vsat2	When ON Sink current $=5 \mathrm{~mA}$		75	150	mV
Leak current	LeakBS2	When OFF		0.03	0.1	$\mu \mathrm{A}$
Bus timing						
Data setup time	tsD	See Timing Chart on Page 15	300			ns
Data hold time	thD	See Timing Chart on Page 15	600			ns
Enable waiting time	twe	See Timing Chart on Page 15	300			ns
Enable setup time	tSE	See Timing Chart on Page 15	300			ns
Enable hold time	the	See Timing Chart on Page 15	600			ns

Electrical Characteristics Measurement Circuit

Description of Functions

The CXA3085AN is a ground wave broadcast tuner IC which converts frequencies to IF in order to tune and detect only the desired reception frequency of VHF, CATV and UHF band signals.
In addition to the mixer, local oscillator and IF amplifier circuits required for frequency conversion to IF, this IC also integrates a PLL circuit for local oscillator frequency control onto a single chip.
The functions of the various circuits are described below.

1. Mixer circuit

This circuit outputs the frequency difference between the signal input to VHFIN or UHFIN and the local oscillation signal.
2. Local oscillator circuit

A VCO is formed by externally connecting an LC resonance circuit composed of a varicap diode and inductance.
3. IF amplifier circuit

This circuit amplifies the mixer IF output, and consists of an amplifier stage and low impedance output stage.

4. PLL circuit

This PLL circuit fixes the local oscillator frequency to the desired frequency. It consists of a prescaler, main divider, reference divider, phase comparator, charge pump and reference oscillator. The control format supports the 3 -wire bus format. The following four modes can be selected according to the combination of the frequency division values of the main and reference dividers.

Mode	Main divider	Reference divider
A-0	15 bit	1024 fixed
A-1	14 bit	512 fixed
A-2	15 bit	640 fixed
A-3/4	15 bit	512 fixed

VHF oscillator circuit

- This circuit is a differential amplifier type oscillator circuit. Pin 18 is the output and Pin 16 is the input. Oscillation is performed by connecting an LC resonance circuit including a varicap to Pin 18 via coupled capacitance, inputting to Pin 16 with feedback capacitance, and applying positive feedback.
- Pin 18 is an open collector, so power must be supplied via the resonance circuit inductance or by the resistance or microinductor. The electric potential of Pin 18 at this time must be DC 3.5 V or more.
- The amplifier between Pins 16 and 18 has an extremely high gain. Therefore, care should be taken to avoid creating parasitic capacitance, resistance or other feedback loops as this may produce abnormal oscillation.

VHF mixer circuit

- The mixer circuit employs a double balance mixer with little local oscillation signal leakage. The input format is base input type, with Pin 12 grounded and the RF signal input to Pin 13.
- The RF signal is inserted from the oscillator, converted to IF frequency and output from Pins 9 and 10.
- Pins 9 and 10 are open collectors, so power must be supplied externally. The electric potential of Pins 9 and 10 at this time must be DC 4.0 V or more.

UHF oscillator circuit

- This oscillator circuit is designed so that two collector ground type Colpitts oscillators perform differential oscillation operation via an LC resonance circuit including a varicap. An LC resonance circuit including a varicap is connected between Pins 19 and 21.
- This circuit contains resonance capacitance comprising Colpitts oscillators, so the LC resonance circuit connected to Pins 19 and 21 oscillates at the frequency indicating the inductance characteristics.

UHF mixer circuit

- This circuit employs a double balance mixer like the VHF mixer circuit.

The input format is base input type, with Pins 14 and 15 as the RF input pins. The input method can be selected from balanced input consisting of differential input to Pins 14 and 15 or unbalanced input consisting of grounding Pin 14 via a capacitor and input to Pin 15.

- Pins 9 and 10 are the mixer outputs.
- Pins 9 and 10 are open collectors, so power must be supplied externally. The electric potential of Pins 9 and 10 at this time must be DC 4.0 V or more.

IF amplifier circuit

- The signals frequency converted by the mixer are output from Pins 9 and 10 , and at the same time are AC coupled inside the IC and input to the IF amplifier.
- Single-tuned filters are connected to Pins 9 and 10 in order to improve the interference characteristics of the IF amplifier.
- The signal amplified by the IF amplifier is output from Pin 25.

The output impedance is approximately 75Ω.

Description of PLL Block

The PLL on this IC supports the 3-wire bus control format.
The serial data is input to the DA, CL and CE pins. The data is loaded to the shift register at the clock rise, and latched at the enable fall.

Symbol	3-wire bus control
CE	Enable input
CL	Clock input
DA	Data input
LOCK	Lock signal output

1) Mode Setting Method

The modes for each frequency step are set according to the MS pin voltage.

Mode	MS pin voltage	Main divider	Reference divider	Reference frequency*	Frequency step*	Control word length
A-0	0 to 0.15 Vcc	15 bit	1024	3.90625 kHz	31.25 kHz	Total 19 bits
A-1	OPEN	14 bit	512	7.8125 kHz	62.5 kHz	Total 18 bits
A-2	0.45 Vcc to 0.55 Vcc	15 bit	640	6.25 kHz	50 kHz	Total 19 bits
A-3	0.65 Vcc to 0.75 Vcc	15 bit	512	7.8125 kHz	62.5 kHz	Total 19 bits
A-4	0.85 Vcc to Vcc	15 bit	512	7.8125 kHz	62.5 kHz	Total 27 bits

* Frequency step is for when X'tal OSC $=4 \mathrm{MHz}$.

2) Programming

- The VCO lock frequency is obtained according to the following formula.

$$
\text { fosc }=\text { fref } \times 8 \times(32 M+S)
$$

fosc: local oscillator frequency
fref : reference frequency
8 : prescaler fixed frequency division ratio
M : main divider frequency division ratio
S : swallow counter frequency division ratio
The variable frequency division ranges of M and S are as follows, and are set as binary.
$32 \leq M \leq 1023$ ($32 \leq M \leq 511$ for $A-1$ mode)
$0 \leq \mathrm{S} \leq 31$

- The PLL control data is comprised of the above frequency data and the band switch control data.

2-1) The normal control format is as follows.

2-1-1: A-0/A-2/A-3 Modes (19-bit data format)

Front				$\leftarrow \mathrm{M}$														SB \rightarrow
BU	FMT	BVH	BVL	M9	M8	M7	M6	M5	M4	M3	M2	M1	M0	S4	S3	S2	S1	S0

2-1-2: A-1 Mode (18-bit data format)

2-1-3: A-4 Mode (27-bit data format)

*) X: Don't care

S0 to : swallow counter frequency division ratio setting
M0 to : main divider frequency division ratio setting
BVL : VL band switch control (output PNP Tr ON when "1")
BVH : VH band switch control (output PNP Tr ON when "1")
FMT : FM trap switch control
(output PNP Tr ON when "1")
BU : UHF band switch control
(output PNP Tr ON when "1")
CP : charge pump current switching
($200 \mu \mathrm{~A}$ when " 1 ", $50 \mu \mathrm{~A}$ when " 0 ")
T1 : test mode selection
CD : charge pump OFF
(when " 1 ")
(when "1")
R0, R1: Reference divider frequency division ratio setting (See the table below.)

Reference Divider Frequency Division Ratio Table

R1	R0	Reference divider
0	1	1024
1	1	512
X	0	640

*) X: Don't care

2-2) The BU and FMT data order can be switched by DC grounding the BYP pin (VHF input ground side).
In this case the control format is as follows.

2-2-1: A-0/A-2/A-3 Modes (19-bit data format)
Front bit

FMT	BU	BVH	BVL	M9	MSB	M8	M7	M6	M5	M4	M3	M2	M1	M0

2-2-2: A-1 Mode (18-bit data format)

Front bit

| FMT | BU | BVH | BVL | M8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

2-2-3: A-4 Mode (27-bit data format)

*) X: Don't care

SO to : swallow counter frequency division ratio setting
MO to : main divider frequency division ratio setting
BVL : VL band switch control (output PNP Tr ON when "1")
BVH : VH band switch control (output PNP Tr ON when "1")
FMT : FM trap switch control (output PNP Tr ON when "1")
BU : UHF band switch control
CP : charge pump current switching
(output PNP Tr ON when "1")
($200 \mu \mathrm{~A}$ when " 1 ", $50 \mu \mathrm{~A}$ when " 0 ")
T1 : test mode selection
(when " ")
CD : charge pump OFF
(when " 1 ")
R0, R1: Reference divider frequency division ratio setting (See the table below.)

Reference Divider Frequency Division Ratio Table

R1	R0	Reference divider
0	1	1024
1	1	512
X	0	640

*) X: Don't care
3) 3-wire Bus Data Format

A-1 Mode (18-bit data format)

A-0/A-2/A-3 Modes (19-bit data format)

ENABLE

A-4 Mode (27-bit data format)

Bus Timing Chart

tSD = Data setup time
tHD = Data hold time
tSE = Enable setup time
thE = Enable hold time
twE = Enable waiting time

Next adjacent cross modulation vs. Reception frequency (Untuned input)

Noise figure vs. Reception frequency (Untuned input, in DSB)

Tuning Response Time

IF output spectrum
RL=0dBm
10dB/div

VBW 10Hz
SPAN 100.0 kHz SWP 30.0s
IF output spectrum
RL=0dBm $10 \mathrm{~dB} / \mathrm{div}$

VHF Input Impedance

UHF Input Impedance

IF Output Impedance

30PIN SSOP (PLASTIC)

PACKAGE STRUCTURE

SONY CODE	SSOP-30P-L01
EIAJ CODE	SSOP030-P-0056
JEDEC CODE	-

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER/PALLADIUM
PLATING	
LEAD MATERIAL	$42 /$ COPPER ALLOY
PACKAGE MASS	0.1 g

[^0]: *1 Measured value for untuned inputs.
 *2 Noise figure is the direct-reading value of NF meter in DSB.
 *3 Desired signal (fd) input level is -30 dBm . Undesired signal (fud) is $100 \mathrm{kHz}, 30 \% \mathrm{AM}$.
 The measurement value is undesired signal level, it measured with a spectrum analyzer at $\mathrm{S} / \mathrm{l}=46 \mathrm{dBm}$.
 *4 Value when the PLL is not operating.

