CMOS 16-bit Single Chip Microcomputer

For the availability of this product, please contact the sales office.

Description

The CXP913P048 is a CMOS 16-bit microcomputer integrating on a single chip an A/D converter, serial interface with an incorporated buffer RAM, highprecision timing pattern generation function, pulse cycle measurement circuit, PWM generator, generalpurpose prescaler, vertical sync separation circuit, and a measurement circuit which measures the signals of capstan $F G$, drum $F G / P G$, reel $F G$ and other servo systems with high precision, as well as basic configurations like a 16-bit CPU, ROM, RAM, and I/O port.
This LSI also provides sleep/stop modes that enable lower power consumption.
The CXP913P048 is the PROM-incorporated version of the CXP913040 with built-in mask ROM. This provides the additional feature of being able to write directly into the program. Thus, it is most suitable for evaluation use during system development and for small-quantity production.

Structure

Silicon gate CMOS IC

Features

- An efficient instruction set as a controller
- Direct addressing, numerous abbreviated forms, multiplication and division instructions
- Instruction sets for C language and RTOS
- Highly quadratic instruction system, general-purpose register of 16 -bit $\times 8$-pin $\times 16$-bank configuration
- Minimum instruction cycle
- Incorporated ROM capacity
- Incorporated RAM capacity
- Peripheral functions
- A/D converter
- Serial interface
- Timers
- High-precision timing pattern generator
- PWM/DA gate output
- Servo input control
- VSYNC separator
- FRC capture unit
- PWM output
- General-purpose prescaler
- Pulse cycle measurement circuit
- General-purpose I/O
- Interruption
- Standby mode
- Package
- Piggy/evaluation chip

100 ns at 20 MHz operation
192K bytes
6144 bytes

8-bit 12-channel successive approximation system, automatic scanning function, 8 -stage (soft) +4 -stage (hard) FIFO for conversion results (Conversion time: $20 \mu \mathrm{~s}$ at 20 MHz)
Buffer RAM (128 bytes, supports high-speed transfer mode), 3 channels
8 -bit timer/counter +8 -bit timer (with timing output), 1 channel 16-bit capture timer/counter (with timing output), 1 channel 16-bit timer, 4 channels
PPG for 27 pins, 42 stages (max.)
PPG for 16 pins, 16 stages (max.)
RTG for 5 pins, 3 channels
PWM for 14 bits, 2 channels
(Repetitive frequency of $39.1 \mathrm{kHz} / 20 \mathrm{MHz}$)
DA gate pulse for 14 bits, 2 channels
Capstan FG, drum FG/PG, reel FG
24-bit and 8-stage FIFO
14 bits, 2 channels
10 bits, 1 channel
1 channel with mask input
80 pins
(max.; when all multi-purpose pins are used as general-purpose I/O.)
28 factors, 28 vectors, multi-interruption and priority selection possible
Sleep/stop
100-pin plastic LQFP
CXP913000 100-pin ceramic LQFP
Block Diagram

Pin Configuration (Top View)

Note) 1. Vss (Pins 13, 39, 70 and 88) must be connected to GND.
2. Vdd (Pins 42 and 87) and Vdd/Vpp (Pin 86) must be connected to Vdd.

Pin Description

Symbol	1/O	Functions							
PAO/PPO000 /PPO100 to PA7/PPO007 /PPO107	Output / Real time output / Real time output	(Port A) 8 -bit output port. Data is gated with PPO0 and PPO1 contents by OR-gate and they are output. (8 pins)		Programmable pattern generator (PPGO, PPG1) output. Functions as high-precision real-time pulse output port. (PPG0 19 pins, PPG1 10 pins)					
PB0/PPO008 /PPO108 PB1/PPO009 /PPO109	Output / Real time output / Real time output	(Port B) 8 -bit output port. Data is gated with PPOO and PPO1 contents by ORgate and they are output. (8 pins)							
$\begin{gathered} \hline \text { PB2/PPO010 } \\ \text { to } \\ \text { PB7/PPO015 } \end{gathered}$	Output / Real time output								
PC0/PPO016 to PC2/PPO018	Output / Real time output	(Port C) 8-bit I/O port. I/O can be specified by bit unit. Data is gated with PPOO or RTO contents by ORgate and they are output. (8 pins)							
$\begin{gathered} \text { PC3/RTO0 } \\ \text { to } \\ \text { PC7/RTO4 } \end{gathered}$	Output / Real time output			Real-time pulse generator (RTG) output. Functions as high-precision real-time pulse output port. (5 pins)					
PD0 to PD7	I/O	(Port D) 8-bit I/O port. I/O can be specified by bit unit. Standby release input function can also be specified by bit unit. Can drive 12 mA sink current when $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$. (8 pins)							
PE0 to PE7	I/O	(Port E) 8-bit I/O port. I/O can be specified by bit unit. Can drive 12 mA sink current when $\mathrm{VDD}=5 \mathrm{~V}$. (8 pins)							
$\frac{\mathrm{PFO} / \overline{\mathrm{ECO}} /}{\mathrm{INTO}}$	Input / Input / Input	External event input for timer/counter. (2 pins)			Input to request external interruption. Active at the falling edge. (2 pins)				
$\frac{\mathrm{PF} 1 / \overline{\mathrm{EC} 2 /}}{\mathrm{INT} 1}$	Input / Input / Input								
PF2/CS1/ NMI/CINT	Input / Input / Input / Input	(Port F) 8 -bit port. Lower 4 bits are for input; upper 4 bits are for output. (8 pins)	Serial chip select (CH1) input.	Input to request non-maskable interruption. Active at the falling edge.		External capture input for 16-bit timer/counter.			
PF3/SI1/INT2	Input / Input / Input		Serial data (CH1) input.		Input to interru falling	request external tion. Active at the dge.			
PF4/SO1	Output / Output		Serial data (CH1) output.						
PF5/ $\overline{\text { SCK } 1}$	Output / I/O		Serial data (CH1) I/O.						
PF6/T1	Output / Output		8 -bit timer/counter output.						
PF7/T2	Output / Output		16-bit capture timer/counter output.						

Symbol	I/O	Functions
EXTAL	Input	Connects a crystal for system clock oscillation. When the clock is supplied externally, input it to EXTAL and input an opposite phase clock to XTAL.
XTAL	Output	System reset. Active at "L" level.
$\overline{\text { RST }}$	I/O	Positive power supply for A/D converter.
AVDD		Reference voltage input for A/D converter.
AVREF	Input	A/D converter GND.
AVSs		Positive power supply. All three VDD pins must be connected to the positive power supply.
VDD		GND. All four Vss pins must be connected to GND.
VSS		Positive power supply for incorporated PROM writing. Connect to VDD for normal operation.
VPP		

I/O Circuit Format for Pins

Pin	Circuit format	When reset
PA0/PPOO00/ PPO100 to PA7/PPO007/ PPO107 PB0/PPO008/ PPO108 to PB1/PPO009/ PPO109 10 pins		Hi-Z
PB2/PPO010 to PB7/PPO015 6 pins	Port B	Hi-Z
PC0/PPO016 to PC2/PPO018 PC3/RTOO to PC7/RTO4 8 pins		Hi-Z
PDO/KSO to PD7/KS7 8 pins	Port D	Hi-Z

Pin	Circuit format	When reset
PE0 to PE7 8 pins	Port E * Large current drive transistor	Hi-Z
PFO/EC0/INTO PF1/EC2/INT1 PF3/SI1/INT2 3 pins	Port F	Hi-Z
PF2/CS1/ NMI/CINT $1 \text { pin }$	Port F	Hi-Z
PF4/SO1 1 pin	Port F	Hi-Z

Pin	Circuit format	When reset
$\text { PF5/ } \overline{\text { SCK1 }}$ 1 pin	Port F " 0 " when reset	Hi-Z
PF6/T1 PF7/T2 2 pins	Port F	"H" level
PG0/PWM0 PG1/PWM1 PG2/PWM2 PG3/PWM3 PG4/DA0 PG5/DA1 6 pins	Port G "0" when reset	Hi-Z
PG6/RFG0 PG7/RFG1 2 pins	Port G Schmitt trigger input	Hi-Z
$\begin{aligned} & \text { PH0/EXIO } \\ & \text { PH1/EXI1 } \\ & \text { PH2/SYNC0/PMI } \\ & \text { PH3/SYNC1 } \\ & \text { PH4/PMSK } \\ & \text { PH5/DPG } \\ & \text { PH6/DFG } \\ & \text { PH7/CFG } \\ & \quad 8 \text { pins } \end{aligned}$	Port H Schmitt trigger input Note) PH2/SYNC0/PMI and PH3/SYNC1 can select CMOS Schmitt trigger input or TTL Schmitt trigger input with the mask option.	Hi-Z

Pin	Circuit format	When reset
$\begin{gathered} \overline{\text { CSO }} \\ \text { SIO } \\ 2 \text { pins } \end{gathered}$	Schmitt trigger input	Hi-Z
$\begin{aligned} & \text { SOO } \\ & 1 \text { pin } \end{aligned}$		Hi-Z
$\overline{\text { SCKO }}$ $1 \text { pin }$		Hi-Z
PIo/SI2 1 pin	Port I	Hi-Z
Pl1/SO2 PI2/SCK2 2 pins	Port 1	Hi-Z

\begin{tabular}{|c|c|c|}
\hline Pin \& Circuit format \& When reset \\
\hline \begin{tabular}{l}
\(\mathrm{PI} 3 / \overline{\mathrm{CS} 2} / \mathrm{PO}\) \\
1 pin
\end{tabular} \& Port I \& Hi-Z \\
\hline \begin{tabular}{l}
PI4/PCK/OSCI \\
PI5/OSCO \\
2 pins
\end{tabular} \& \begin{tabular}{l}
Port I \\
Note) The circuit format in Fig. 1 or Fig. 2 can be selected with the mask option.
\end{tabular} \& \begin{tabular}{l}
Oscillation \\
Hi-Z
\end{tabular} \\
\hline PI6/XOUT

1 pin \& Port I \& Hi-Z

\hline
\end{tabular}

Pin	Circuit format	When reset
PI7/ANO $1 \text { pin }$	Port I	Hi-Z
AN1 to AN3 3 pins	Input multiplexer	Hi-Z
PJ0/AN4/KS8 to PJ7/AN11/KS15 8 pins	Port J	Hi-Z
EXTAL XTAL		Oscillation
$\overline{\mathrm{RST}}$ 1 pin		"L" level

Absolute Maximum Ratings
(Vss = 0V reference)

Item	Symbol	Rating	Unit	Remarks
Supply voltage	Vdd	-0.3 to +7.0	V	
	AVDD	AVss to $+7.0{ }^{* 1}$	V	
	AVss	-0.3 to +0.3	V	
Input voltage	Vin	-0.3 to $+7.0 * 2$	V	
Output voltage	Vout	-0.3 to $+7.0 * 2$	V	
High level output current	Іон	-5	mA	
High level total output current	迷	-50	mA	Total for all output pins
Low level output current	IoL	15	mA	All pins excluding large current output pins
	Iolc	20	mA	Large current output pins*3
Low level total output current	Elol	130	mA	Total for all output pins
Operating temperature	Topr	-20 to +75	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	
Allowable power dissipation	Pd	380	mW	

*1 AVDD and VDD must be the same voltage.
*2 Vin and Vout must not exceed Vdd +0.3 V .
*3 N-ch transistors of PD and PE output ports are the large current drive transistors.
Note) Usage exceeding absolute maximum ratings may permanently impair the LSI. Normal operation should be conducted under the recommended operating conditions. Exceeding these conditions may adversely affect the reliability of the LSI.

Item	Symbol	Min.	Max.	Unit	Remarks
Supply voltage	Vdo	2.7	5.5	V	Guaranteed operation range for high-speed mode ($1 / 2$ frequency dividing clock)
		2.7	5.5	V	Guaranteed operation range for low-speed mode ($1 / 16$ frequency dividing clock)
		2.5	5.5	V	Guaranteed data hold range during stop mode
Analog voltage	AVDD	2.7	5.5	V	*1
High level input voltage	VIH	0.7 VDD	VDD	V	*2
	VIHS	0.8 VDD	VDD	V	CMOS Schmitt trigger input*3
	Vihts	2.2	Vdo	V	TTL Schmitt trigger input*4, *7
	VIHEX	VDD - 0.4	Vdo +0.3	V	EXTAL*5
Low level input voltage	VIL	0	0.3 VdD	V	*2
			0.2 VDD	V	*2, *6
	VILS	0	0.2 VdD	V	CMOS Schmitt trigger input*3
	VILTs	0	0.8	V	TTL Schmitt trigger input*4, *7
	VILEX	-0.3	0.4	V	EXTAL
Operating temperature	Topr	-20	+75	${ }^{\circ} \mathrm{C}$	

${ }^{* 1} \mathrm{AV} V_{D D}$ and $V_{D D}$ must be the same voltage.
*2 PC, PD, PE, PI1, PI3 to PI7, PJ for normal input port
*3 $\overline{\mathrm{CSO}}, \mathrm{SIO}, \overline{\mathrm{SCKO}}, \overline{\mathrm{RST}}, \mathrm{PF0} / \overline{\mathrm{EC} 0} / \overline{\mathrm{NTO}}, \mathrm{PF} 1 / \overline{\mathrm{EC} 2} / \overline{\mathrm{NT} 1}, \mathrm{PF} 2 / \overline{\mathrm{CS} 1} / \overline{\mathrm{NM}} / / \mathrm{CINT}, \mathrm{PF3} / \mathrm{SI} 1 / \overline{\mathrm{NT} 2}, \mathrm{PF} 5 / \overline{\mathrm{SCK} 1}$, PG6/RFG0, PG7/RFG1, PH (PH2 and PH3 when CMOS Schmitt trigger input is selected with the mask option), $\mathrm{PI} 10 / \mathrm{SI} 2, \mathrm{PI} 2 / \overline{\mathrm{SCK} 2}$.
*4 PH2 and PH3 (when TTL Schmitt trigger input is selected with the mask option).
*5 Specified only during external clock input.
*6 When the supply voltage (VDD) is within the range of 2.7 to 3.6 V .
${ }^{* 7}$ When the supply voltage (VDD) is within the range of 4.5 to 5.5 V .

DC Characteristics
($\mathrm{Ta}=-20$ to $+75^{\circ} \mathrm{C}, \mathrm{Vss}=0 \mathrm{~V}$ reference $)$

Item	Symbol	Pin	Conditions	Min.	Typ.	Max.	Unit
High level output voltage	Vor	PA to PE, PF6 to PF7, PG0 to PG5, PIO, PI3, PI6, PJ	$\mathrm{V} \mathrm{DD}=4.5 \mathrm{~V}$, $\mathrm{IOH}=-0.5 \mathrm{~mA}$	4.0			V
			$\mathrm{VDD}=4.5 \mathrm{~V}, \mathrm{IOH}=-1.2 \mathrm{~mA}$	3.5			V
			$\mathrm{VDD}=2.7 \mathrm{~V}, \mathrm{IOH}=-0.15 \mathrm{~mA}$	2.4			V
			$\mathrm{V} D \mathrm{D}=2.7 \mathrm{~V}, \mathrm{IOH}=-0.5 \mathrm{~mA}$	2.0			V
		$\begin{aligned} & \mathrm{PF} 4, \mathrm{PF} 5, \mathrm{Pl1,} \\ & \mathrm{PI}, \overline{\mathrm{SO} 0}, \overline{\mathrm{SCK}} \end{aligned}$	$\mathrm{V} \mathrm{DD}=4.5 \mathrm{~V}, \mathrm{loH}=-4.0 \mathrm{~mA}$	3.6			V
			$\mathrm{V} D \mathrm{DD}=3.0 \mathrm{~V}, \mathrm{IOH}=-4.0 \mathrm{~mA}$	2.0			V
Low level output voltage	Vol	PA to PC, PF4 to PF7, PG0 to PG5, PI0 to PI3,$\frac{\mathrm{PI} 6, \mathrm{PJ},}{\frac{\mathrm{SOO}}{\mathrm{RST}^{*}}, \frac{\mathrm{SCKO}}{},}$	$\mathrm{VDD}=4.5 \mathrm{~V}, \mathrm{loL}=1.8 \mathrm{~mA}$			0.4	V
			$\mathrm{VDD}=4.5 \mathrm{~V}, \mathrm{loL}=3.6 \mathrm{~mA}$			0.6	V
			$\mathrm{VDD}=2.7 \mathrm{~V}, \mathrm{loL}=1.2 \mathrm{~mA}$			0.3	V
			$\mathrm{VDD}=2.7 \mathrm{~V}, \mathrm{loL}=1.6 \mathrm{~mA}$			0.5	V
		PD, PE	$\mathrm{VDD}=4.5 \mathrm{~V}$, $\mathrm{loL}=12.0 \mathrm{~mA}$			1.5	V
			$\mathrm{VDD}=2.7 \mathrm{~V}$, lol $=5.0 \mathrm{~mA}$			1.0	V
Input current	ІІhe	EXTAL	$\mathrm{V}_{\text {DD }}=5.5 \mathrm{~V}, \mathrm{~V} \mathrm{IH}=5.5 \mathrm{~V}$	0.5		40	$\mu \mathrm{A}$
			$\mathrm{V}_{\text {DD }}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=3.6 \mathrm{~V}$	0.3		20	$\mu \mathrm{A}$
	IILE		Vdd $=5.5 \mathrm{~V}, \mathrm{~V}$ IL $=0.4 \mathrm{~V}$	-0.5		-40	$\mu \mathrm{A}$
			VDD $=3.6 \mathrm{~V}, \mathrm{VIL}=0.3 \mathrm{~V}$	-0.3		-20	$\mu \mathrm{A}$
	IILR	$\overline{\mathrm{RST}}{ }^{*}$	V DD $=5.5 \mathrm{~V}, \mathrm{~V}$ IL $=0.4 \mathrm{~V}$	-1.5		-400	$\mu \mathrm{A}$
			$\mathrm{V} D \mathrm{D}=3.6 \mathrm{~V}, \mathrm{~V}$ IL $=0.3 \mathrm{~V}$	-0.9		-200	$\mu \mathrm{A}$
I/O leakage current	IIz	PA to PJ, AN1 to AN3, CSO, SIO, SOO, $\overline{\mathrm{SCKO}}, \overline{\mathrm{RST}}{ }^{* 2}$	$\mathrm{V} D \mathrm{D}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0,5.5 \mathrm{~V}$			± 10	$\mu \mathrm{A}$
			$\mathrm{Vdd}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0,3.6 \mathrm{~V}$			± 10	$\mu \mathrm{A}$
Supply current*3	IDD*4	Vdd, Vss	20 MHz crystal oscillation $\begin{aligned} & \left(C_{1}=C_{2}=10 p F\right), \\ & V D D=5 V \pm 10 \% \end{aligned}$		40	65	mA
			20MHz crystal oscillation $\begin{aligned} & \left(C_{1}=C_{2}=10 \mathrm{pF}\right), \\ & \mathrm{VDD}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} \end{aligned}$		22	40	mA
	IDDS1*5		20 MHz crystal oscillation $\begin{aligned} & \left(C_{1}=C_{2}=10 \mathrm{pF}\right), \\ & V_{D D}=5 \mathrm{~V} \pm 10 \% \text {, Sleep mode } \end{aligned}$		8	14	mA
			20MHz crystal oscillation $\begin{aligned} & \left(C_{1}=C_{2}=10 \mathrm{pF}\right), \\ & V_{D D}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} \text {, Sleep mode } \end{aligned}$		4.5	8	mA
	IDDS2		Vdd $=5.5 \mathrm{~V}$, Stop mode			10	$\mu \mathrm{A}$
			VdD $=3.6 \mathrm{~V}$, Stop mode			10	$\mu \mathrm{A}$
Input capacitance	Cin	Pins other than Vod, Vss, AVdd, AVss	Clock 1MHz OV for all pins excluding measured pins		10	20	pF

*1 $\overline{\mathrm{RST}}$ is specified only in evaluation mode.
*2 In RST, the input current is specified when pull-up resistor is selected; the leakage current is specified when no resistor is selected.
*3 When all output pins are open.
*4 When the upper two bits (CPU clock selected) of the clock control register (CLC: 0002FEh) are set to "00" and the LSI is operated in high-speed mode ($1 / 2$ frequency dividing clock).
*5 When the clock generator output is not selected at PI6.
AC Characteristics
(1) Clock timing
($\mathrm{Ta}=-20$ to $+75^{\circ} \mathrm{C}, \mathrm{Vss}=0 \mathrm{~V}$ reference)

Item	Symbol	Pin	Conditions		Min.	Max.	Unit
System clock frequency	fc	XTAL, EXTAL	Fig. 1, Fig. 2	VDD $=5.0 \mathrm{~V} \pm 10 \%$	1	20	MHz
				$\mathrm{VDD}=3.0 \mathrm{~V} \pm 10 \%$	1	20	MHz
System clock input pulse width	tхн,txL	EXTAL	Fig. 1, Fig. 2 External clock drive	$\mathrm{VDD}=5.0 \mathrm{~V} \pm 10 \%$	20		ns
				VDD $=3.0 \mathrm{~V} \pm 10 \%$	20		ns
System clock input rise time, fall time	tcr, tcF	EXTAL	Fig. 1, Fig. 2 External clock drive	VDD $=5.0 \mathrm{~V} \pm 10 \%$		200	ns
				VDD $=3.0 \mathrm{~V} \pm 10 \%$		200	ns
Event count input clock pulse width	$\begin{aligned} & \text { tee, }, \\ & \text { tel } \end{aligned}$	$\begin{aligned} & \text { PFO/ } \overline{\text { ECO }}, \end{aligned}$	Fig. 3	$\mathrm{VDD}=5.0 \mathrm{~V} \pm 10 \%$	tsys $+50 * 1$		ns
				$\mathrm{VDD}=3.0 \mathrm{~V} \pm 10 \%$	tsys + 100*1		ns
Event count input clock rise time, fall time	$\begin{aligned} & \text { ter, } \\ & \text { tef } \end{aligned}$	$\begin{aligned} & \text { PF0/EC0, } \\ & \text { PF1/EC2 } \end{aligned}$	Fig. 3	$V_{D D}=5.0 \mathrm{~V} \pm 10 \%$		20	ms
				$\mathrm{VDD}=3.0 \mathrm{~V} \pm 10 \%$		20	ms

*1 tsys indicates the three values below according to the upper two bits (CPU clock selected) of the clock control register (CLC: 0002FEh).
tsys [ns] = 2000/fc (upper two bits = "00"), 4000/fc (upper two bits = "01"), 16000/fc (upper two bits = "11")
Fig. 1. Clock timing

Fig. 2. Clock applied conditions

Fig. 3. Event count clock timing

(2) Serial transfer (CH0, CH1, CH2)
($\mathrm{Ta}=-20$ to $+75^{\circ} \mathrm{C}$, Vss $=0 \mathrm{~V}$ reference)

Item	Symbol	Pin	Conditions		Min	Max.	Unit
$\overline{\mathrm{CS}} \downarrow \rightarrow \overline{\mathrm{SCK}}$ delay time	tocsk		Chip select transfer mode (SCK = output mode)	$\mathrm{VDD}=5.0 \mathrm{~V} \pm 10 \%$		tsys +200	ns
		SCK2		$\mathrm{VDD}=3.0 \mathrm{~V} \pm 10 \%$		tsys + 250	
$\overline{\mathrm{CS}} \uparrow \rightarrow \overline{\mathrm{SCK}}$ float delay time	tocskf	$\begin{aligned} & \text { SO0, } \\ & \text { SO1, } \\ & \text { SO2 } \end{aligned}$	Chip select transfer mode(SCK = output mode)	$\mathrm{VDD}=5.0 \mathrm{~V} \pm 10 \%$		tsys +200	ns
				$\mathrm{VDD}=3.0 \mathrm{~V} \pm 10 \%$		tsys + 250	
$\overline{\mathrm{CS}} \downarrow \rightarrow \mathrm{SO}$ delay time	tocso	$\begin{aligned} & \hline \mathrm{SOO}, \\ & \mathrm{SO} 1 \\ & \mathrm{SO} 2 \end{aligned}$	Chip select transfer mode	$\mathrm{VDD}=5.0 \mathrm{~V} \pm 10 \%$		tsys +200	ns
				$\mathrm{VDD}=3.0 \mathrm{~V} \pm 10 \%$		tsys +250	
$\overline{\mathrm{CS}} \uparrow \rightarrow \mathrm{SO}$ float delay time	tocsof	$\begin{aligned} & \overline{\mathrm{CSO}}, \\ & \mathrm{CS1} \\ & \hline \mathrm{CS2} \end{aligned}$	Chip select transfer mode	$\mathrm{VDD}=5.0 \mathrm{~V} \pm 10 \%$		tsys +200	ns
				$V_{D D}=3.0 \mathrm{~V} \pm 10 \%$		tsys +250	
$\overline{\mathrm{CS}}$ high level width	twhes	$\begin{aligned} & \overline{\text { SCKO }} \\ & \begin{array}{l} \text { SCK1 } \\ \text { SCK2 } \end{array} \end{aligned}$	Chip select transfer mode	$\mathrm{VDD}=5.0 \mathrm{~V} \pm 10 \%$	tsys +100		ns
				$V_{D D}=3.0 \mathrm{~V} \pm 10 \%$	tsys +100		
SCK cycle time	tkcy	$\begin{aligned} & \overline{\text { SCKO }} \\ & \begin{array}{l} \text { SCK1 } \end{array}, \\ & \hline \text { SCK2 } \end{aligned}$	Input mode	$\mathrm{VDD}=5.0 \mathrm{~V} \pm 10 \%$	2tsys + 200		ns
				$V_{D D}=3.0 \mathrm{~V} \pm 10 \%$	2tsys +200		
			Output mode	$\mathrm{VDD}=5.0 \mathrm{~V} \pm 10 \%$	16000/fc		ns
				$V_{D D}=3.0 \mathrm{~V} \pm 10 \%$	16000/fc		
$\overline{\mathrm{SCK}}$ high, low level width	$\begin{aligned} & \text { tкн, } \\ & \text { tкL } \end{aligned}$		Input mode	$\mathrm{VDD}=5.0 \mathrm{~V} \pm 10 \%$	tsys +100		ns
				$\mathrm{VDD}=3.0 \mathrm{~V} \pm 10 \%$	tsys +100		
			Output mode	$\mathrm{VDD}=5.0 \mathrm{~V} \pm 10 \%$	8000/fc - 50		ns
				$V_{D D}=3.0 \mathrm{~V} \pm 10 \%$	8000/fc - 75		
SI input setup time (for $\overline{\mathrm{SCK}} \uparrow$)	tsık	SIO, SI1, SI2	$\overline{\text { SCK }}$ input mode	$\mathrm{VDD}=5.0 \mathrm{~V} \pm 10 \%$	100		ns
				VDD $=3.0 \mathrm{~V} \pm 10 \%$	100		
			$\overline{\text { SCK }}$ output mode	$\mathrm{VDD}=5.0 \mathrm{~V} \pm 10 \%$	200 - tsys		ns
				$\mathrm{VDD}=3.0 \mathrm{~V} \pm 10 \%$	200 - tsys		
SI input hold time (for SCK \uparrow)	tksı	SIO, SI1, SI2	$\overline{\text { SCK }}$ input mode	$\mathrm{VDD}=5.0 \mathrm{~V} \pm 10 \%$	tsys +100		ns
				$\mathrm{VDD}=3.0 \mathrm{~V} \pm 10 \%$	tsys +100		
			$\overline{\text { SCK }}$ output mode	$\mathrm{VDD}=5.0 \mathrm{~V} \pm 10 \%$	tsys +100		ns
				$V_{D D}=3.0 \mathrm{~V} \pm 10 \%$	tsys +100		
$\overline{\mathrm{SCK}} \downarrow \rightarrow \mathrm{SO}$ delay time	tkso	$\begin{aligned} & \text { SOO, } \\ & \text { SO1, } \\ & \text { SO2, } \end{aligned}$	$\overline{\text { SCK }}$ input mode	$\mathrm{VDD}=5.0 \mathrm{~V} \pm 10 \%$		tsys +100	ns
				$\mathrm{VDD}=3.0 \mathrm{~V} \pm 10 \%$		tsys +150	
			$\overline{\text { SCK }}$ output mode	$\mathrm{VDD}=5.0 \mathrm{~V} \pm 10 \%$		50	ns
				$\mathrm{VDD}=3.0 \mathrm{~V} \pm 10 \%$		100	
Minimum interval time	tint	$\begin{aligned} & \overline{\text { SCKO }} \\ & \frac{\text { SCK1 }}{} \\ & \hline \text { SCK2 } \end{aligned}$	$\overline{\text { SCK }}$ input mode	$\mathrm{VDD}=5.0 \mathrm{~V} \pm 10 \%$	2tsys +100		ns
				$V_{D D}=3.0 \mathrm{~V} \pm 10 \%$	$2 \mathrm{tsys}+125$		
			SCK output mode	$\mathrm{VDD}=5.0 \mathrm{~V} \pm 10 \%$	8000/fc - 50		ns
				$V_{D D}=3.0 \mathrm{~V} \pm 10 \%$	8000/fc - 75		

Note 1) tsys indicates the three values below according to the upper two bits (CPU clock selected) of the clock control register CLC (address: 0002FEh).
tsys [ns] = 2000/fc (upper two bits = "00"), 4000/fc (upper two bits = "01"), 16000/fc (upper two bits = "11")
Note 2) The load condition for the $\overline{\text { SCK }}$ output mode, SO output delay time is 150 pF when $\mathrm{VDD}=5.0 \mathrm{~V} \pm 10 \%$ and 100 pF when $\mathrm{VdD}=3.0 \mathrm{~V} \pm 10 \%$.

Fig. 4. Serial transfer $\mathrm{CH} 0, \mathrm{CH} 1, \mathrm{CH} 2$ timing

(3) A/D converter characteristics
$\left(\mathrm{Ta}=-20\right.$ to $+75^{\circ} \mathrm{C}, \mathrm{VDD}=\mathrm{AVDD}=\mathrm{AVREF}=2.7$ to $5.5 \mathrm{~V}, \mathrm{Vss}=\mathrm{AVss}=0 \mathrm{~V}$ reference $)$

Item	Symbol	Pin	Conditions		Min.	Typ.	Max.	Unit
Resolution							8	Bits
Linearity error			$\mathrm{Ta}=25^{\circ} \mathrm{C}$	$\mathrm{VDD}=\mathrm{AVDD}=5.0 \mathrm{~V}$			± 1.5	LSB
				$\mathrm{V} D \mathrm{D}=\mathrm{AVDD}=3.0 \mathrm{~V}$			± 1.5	
Zero transition voltage	$\mathrm{V}_{\mathrm{Z}}{ }^{* 1}$			$\mathrm{V} D \mathrm{D}=\mathrm{AVDD}=5.0 \mathrm{~V}$	-10	10	50	mV
				$\mathrm{V} D \mathrm{D}=\mathrm{AVDD}=3.0 \mathrm{~V}$	-10	5	35	
Full-scale transition voltage	$\mathrm{VFT}^{*}{ }^{*}$			$\mathrm{VDD}=\mathrm{AVDD}=5.0 \mathrm{~V}$	4935	4975	5015	mV
				$\mathrm{V} D \mathrm{D}=\mathrm{AV} \mathrm{DD}=3.0 \mathrm{~V}$	2955	2985	3015	
Conversion time	tconv				200tsys			$\mu \mathrm{s}$
Sampling time	tsamp				14tsys			$\mu \mathrm{s}$
Reference input voltage	Vref	AVref			0.9AVdd		AVdd	V
Analog input voltage	Vian	ANO to AN11			0		AVref	V
AVref current	Iref	AVref	Operation mode	V DD $=5.5 \mathrm{~V}$		0.65	1.2	mA
				$\mathrm{V} D \mathrm{~d}=3.6 \mathrm{~V}$		0.45	0.8	
	Irefs		Sleep mode Stop mode	$\mathrm{VdD}=5.5 \mathrm{~V}$			10	$\mu \mathrm{A}$
				$\mathrm{V} D \mathrm{~d}=3.6 \mathrm{~V}$			10	

${ }^{*} 1 \mathrm{Vzt}$: Value at which the digital conversion value changes from 00 h to 01 h and vice versa.
*2 VFT: Value at which the digital conversion value changes from FEh to FFh and vice versa.
Note) tsys indicates the three values below according to the upper two bits (CPU clock selected) of the clock control register (CLC: 0002FEh).
tsys [ns] = 2000/fc (upper two bits $=$ "00"), 4000/fc (upper two bits $=$ "01"), 16000/fc (upper two bits $=$ "11")

Fig. 5. Definition of A / D converter terms

(4) Interruption and reset input ($\mathrm{Ta}=-20$ to $+75^{\circ} \mathrm{C}, \mathrm{VDD}=2.7$ to 5.5 V , $\mathrm{VSS}=0 \mathrm{~V}$ reference)

Item	Symbol	Pin	Conditions	Min.	Max.	Unit
External interruption high, low level width	t_{H}, t_{IL}	$\frac{\overline{\mathrm{NMI}}}{\mathrm{INT0}}$ $\frac{\mathrm{INT} 1}{\mathrm{INT2}}$ PD0 to PD7				
Reset input low level width	$\mathrm{t}_{\text {RSL }}$	$\overline{\mathrm{RST}}$		1		$\mu \mathrm{~s}$

*1 tsys indicates the three values below according to the upper two bits (CPU clock selected) of the clock control register (CLC: 0002FEh).
tsys [ns] = 2000/fc (upper two bits = "00"), 4000/fc (upper two bits = "01"), 16000/fc (upper two bits = "11")

Fig. 6. Interruption input timing

Fig. 7. $\overline{R S T}$ input timing

(5) General-purpose prescaler
($\mathrm{Ta}=-20$ to $+75^{\circ} \mathrm{C}, \mathrm{Vss}=0 \mathrm{~V}$ reference $)$

Item	Symbol	Pin	Conditions		Min.	Typ.	Max.	Unit
External clock input frequency	fPCK	PCK		$\mathrm{VDD}=5.0 \mathrm{~V} \pm 10 \%$			12	MHz
				$V \mathrm{DD}=3.0 \mathrm{~V} \pm 10 \%$			12	
External clock input pulse width	twh, twL	PCK		$\mathrm{VDD}=5.0 \mathrm{~V} \pm 10 \%$	33			ns
				$V D D=3.0 \mathrm{~V} \pm 10 \%$	33			
External clock input rise time, fall time	$\begin{aligned} & t_{R}, \\ & t_{F} \end{aligned}$	PCK		$V \mathrm{DD}=5.0 \mathrm{~V} \pm 10 \%$			200	ns
				$V D D=3.0 V \pm 10 \%$			200	
Prescaler output delay time (for PCK \uparrow)	tply	PO	External clock input PCK $t_{R}=t_{F}=6 n s$	$V \mathrm{DD}=5.0 \mathrm{~V} \pm 10 \%$		80	130	ns
				VDD $=3.0 \mathrm{~V} \pm 10 \%$		130	220	
	tPhL			$\mathrm{VDD}=5.0 \mathrm{~V} \pm 10 \%$		60	100	ns
				$V D D=3.0 V \pm 10 \%$		90	150	
Prescaler output rise time, fall time	ttib	PO	External clock input PCK $t_{R}=t_{F}=6 n s$	$\mathrm{VDD}=5.0 \mathrm{~V} \pm 10 \%$		50	100	ns
				$\mathrm{VDD}=3.0 \mathrm{~V} \pm 10 \%$		100	280	
	t ${ }_{\text {the }}$			$V \mathrm{DD}=5.0 \mathrm{~V} \pm 10 \%$		20	40	ns
				$\mathrm{VDD}=3.0 \mathrm{~V} \pm 10 \%$		40	80	

Note) PO pin load condition: 50pF

Fig. 8. General-purpose prescaler timing

(6) Other
($\mathrm{Ta}=-20$ to $+75^{\circ} \mathrm{C}, \mathrm{Vss}=0 \mathrm{~V}$ reference $)$

Item	Symbol	Pin	Conditions		Min.	Typ.	Max.	Unit
CFG input high, low level width	$\begin{aligned} & \text { tcFe, } \\ & \text { tcFL } \end{aligned}$	CFG		$\mathrm{VDD}=5.0 \mathrm{~V} \pm 10 \%$	tsys +200			ns
				VDD $=3.0 \mathrm{~V} \pm 10 \%$	tsys +200			
DFG input high, low level width	$\begin{aligned} & \text { tDFH, } \\ & \text { tDFL } \end{aligned}$	DFG		$\mathrm{VDD}=5.0 \mathrm{~V} \pm 10 \%$	1000/fc +200			ns
				VDD $=3.0 \mathrm{~V} \pm 10 \%$	1000/fc +200			
DPG minimum pulse width	tbpw	DPG		$V \mathrm{DD}=5.0 \mathrm{~V} \pm 10 \%$	50			ns
				VDD $=3.0 \mathrm{~V} \pm 10 \%$	50			
DPG minimum removal time	topr	DPG		VDD $=5.0 \mathrm{~V} \pm 10 \%$	50			ns
				VDD $=3.0 \mathrm{~V} \pm 10 \%$	50			
RFG input high, Iow level width	$t_{\text {trFH }}$, $t_{\text {RFL }}$	$\begin{aligned} & \text { RFG0 } \\ & \text { RFG1 } \end{aligned}$		VDD $=5.0 \mathrm{~V} \pm 10 \%$	tsys +200			ns
				VDD $=3.0 \mathrm{~V} \pm 10 \%$	tsys +200			
EXI input high, low level width	tein, teil	$\begin{aligned} & \text { EXIO } \\ & \text { EXI1 } \end{aligned}$	When tsys$=2000 / \mathrm{fc}$	$\mathrm{VDD}=5.0 \mathrm{~V} \pm 10 \%$	tsys +200			ns
				$V \mathrm{DD}=3.0 \mathrm{~V} \pm 10 \%$	tsys +200			
PMI input high, low level width	tpIH, tpIL	PMI		$\mathrm{VDD}=5.0 \mathrm{~V} \pm 10 \%$	tsys +200			ns
				$V \mathrm{DD}=3.0 \mathrm{~V} \pm 10 \%$	tsys +200			
PMSK minimum pulse width	tpmw	PMSK		VDD $=5.0 \mathrm{~V} \pm 10 \%$	tsys +200			ns
				$V \mathrm{DD}=3.0 \mathrm{~V} \pm 10 \%$	tsys +200			
PMSK minimum removal time	tPMR	PMSK		$\mathrm{VDD}=5.0 \mathrm{~V} \pm 10 \%$	tsys +200			ns
				VDD $=3.0 \mathrm{~V} \pm 10 \%$	tsys +200			
XOUT output rise time, fall time	tтLH	XOUT	When the load is 50pF	$V \mathrm{DD}=5.0 \mathrm{~V} \pm 10 \%$		50	100	ns
				VDD $=3.0 \mathrm{~V} \pm 10 \%$		100	280	
	tthi			$\mathrm{VDD}=5.0 \mathrm{~V} \pm 10 \%$		20	40	
				$V \mathrm{DD}=3.0 \mathrm{~V} \pm 10 \%$		40	80	

Note) tsys indicates the three values below according to the upper two bits (CPU clock selected) of the clock control register (CLC: 0002FEh).
tsys [ns] = 2000/fc (upper two bits = "00"), 4000/fc (upper two bits = "01"), 16000/fc (upper two bits = "11")

Fig. 9. Other timing

Appendix

Fig. 10. Recommended oscillation circuit

General-purpose prescaler clock

Mask option

Manufacturer	Model	fc (MHz)	Main clock		General-purpose prescaler clock	
			$\mathrm{C}_{1}(\mathrm{pF})$	$\mathrm{C}_{2}(\mathrm{pF})$	$\mathrm{C}_{1}(\mathrm{pF})$	$\mathrm{C}_{2}(\mathrm{pF})$
RIVER ELETEC CO.,LTD.	HC-49/U03	12	10	10	4	4
		16				
		20				
KINSEKI LTD.	HC-49/U (-S)	12	10	10	4	4
		16				
		20				

Note 1) Use the general-purpose prescaler clock at 12 MHz or less.
Note 2) Crystals and capacitors should be placed near the LSI and wiring should be as short as possible.

Product List

Item	Mask ROM	CXP913P048R-2- $\square \square$
Package	$100-$ pin plastic LQFP	100-pin plastic LQFP
ROM capacity	160 K byte	PROM 192K byte
EXTAL system operating voltage*1	2.7 to $5.5 \mathrm{~V} / 4.5$ to 5.5V	2.7 to 5.5V
Reset pin pull-up resistor	Existent/Non-existent	Existent
PH2 input format	CMOS Schmitt trigger/ TTL Schmitt trigger	CMOS Schmitt trigger
PH3 input format	CMOS Schmitt trigger/ TTL Schmitt trigger	CMOS Schmitt trigger
PI4/PI5 pin format	Oscillation circuit/lnput port	Oscillation circuit

[^0]Example of Representative Characteristics

Idd vs. Vdd
(fc $=20 \mathrm{MHz}, \mathrm{Ta}=25^{\circ} \mathrm{C}$, Typical)

IdD vs. fc
$\left(\mathrm{VDD}=5 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}\right.$, Typical)

100PIN LQFP (PLASTIC)

NOTE: Dimension "*" does not include mold protrusion.

SONY CODE	LQFP-100P-L01
EIAJ CODE	LQFP100-P-1414
JEDEC CODE	

PACKAGE STRUCTURE

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER PLATING
LEAD MATERIAL	42 ALLOY
PACKAGE MASS	0.8 g

[^0]: ${ }^{* 1}$ Select 4.5 V to 5.5 V when this LS is used with a supply voltage range of 4.5 V to 5.5 V .

