Magnetoresistance Element

Description

DM-232 a magnetic sensor using magnetoresistance effect is composed of ferromagnetic material deposited by evaporation on a silicon substrate. It is suitable for angle of rotation detection.

Features

- Low magnetic field and high sensitivity: bridge type stands for large output voltage
 150 mVp-p (Min.) at Vcc=5 V, H=14400 A/m
- Fitted with bias magnet: stable output.
- High reliability: Achieved through silicon nitride protective film.

Ferromagnetic thin film circuit (With ferrite magnet)

Applications

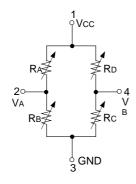
- · Non-contact angle of rotation detection.
- · Contactless potentiometer.

Absolute Maximum Ratings (Ta=25 °C)

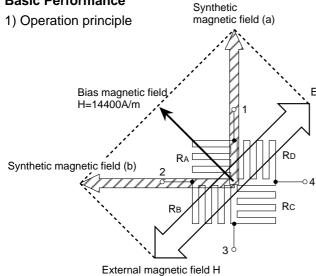
Supply voltage
 Vcc
 Storage temperature
 Tstg
 -30 to +100
 °C

Recommended Operating Conditions

Supply voltage
 Operating temperature
 Topr
 -20 to + 75
 C


Electrical Characteristics

Ta=25 °C


Electrical Characteristics				1a=25 C			
Item	Symbol	Condition	Min.	Тур.	Max.	Unit	
Output voltage	Vo	Vcc=5 V , H=14400A/m (Peak) AC magnetic field θ =0 °	150			mVp-p	
Midpoint potential	Va, Vb	Vcc=5 V , H=0 A/m	2.475		2.525	V	
Midpoint potential	VA-VB	Vcc=5 V , H=0 A/m			15	%	
difference/Output voltage	Vo	VCC-3 V , 11-0 A/111			15	/0	
Total resistance	Rт	H=14400A/m (Peak) AC magnetic field θ =0 °	500	650	800	Ω	

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

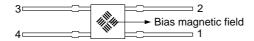
Equivalent Circuit

Basic Performance

External magnetic field H

Various resistances change according to the direction of the combnied bias and external magnetic field.

i) When the direction of the synthetic magnetic field is (a),


RA,Rc: Minimum resistance

Rв,RD: Maximum resistance

ii) When the direction of the synthetic magnetic field is (b),

Ra,Rc: Maximum resistance Rв,Rp: Minimum resistance

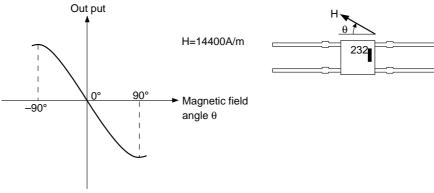

* Device internal structure (Back of mark face)

2) Power supply pin and output pin

3) Sensitivity direction

The ferromagnetic magnetoresistance element differs from the semiconductor magnetoresistance element and hole element in that it responds only to the magnetic field within the element's surface. It is not sensitive to the magnetic field perpendicular to the element.

Basic Application

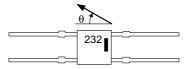

Rotation angular detection

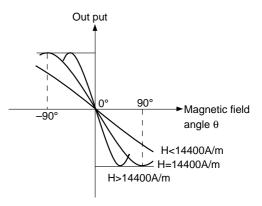
3

Out put

Out put

Out put

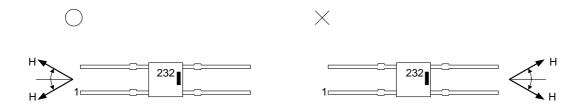


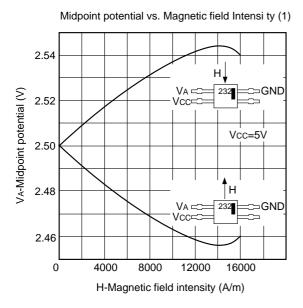

Handling precautions

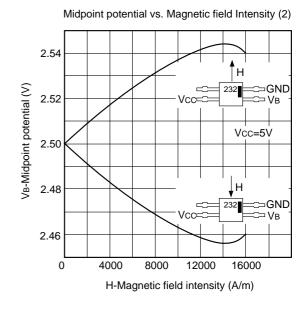
1) Most suitable magnetic field intensity

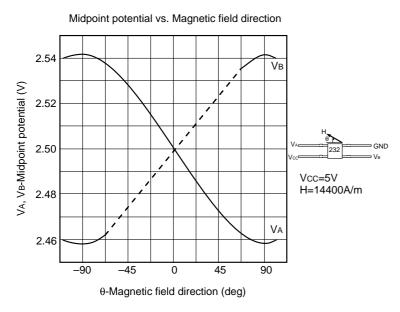
When the external magnetic field is at H=14400A/m, rotation angle can be

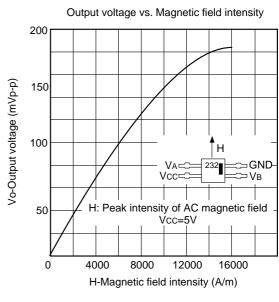
detected most effectively.

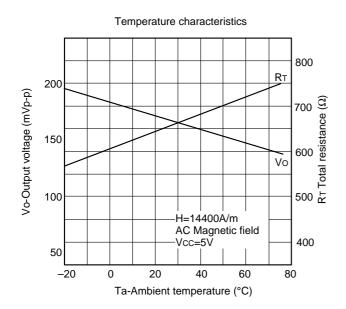

Whe the external magnetic field H<14400A/m, output voltage shrinks.

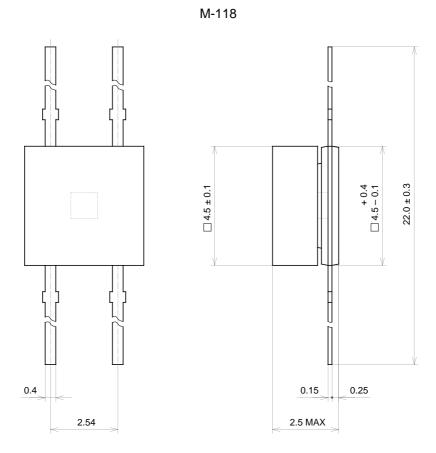

When the external magnetic field H>14400A/m, the detection angle range shrinks.


Whe the external magnetic field H<14400A/m, the detection angle range becomes larger. In regions other than -90 $^{\circ}$ to +90 $^{\circ}$, the magnetic field combined with the bias magnetic field, shrinks down, which is not advisable. Also, when the range to be detected is smaller than -90 $^{\circ}$ to +90 $^{\circ}$ it is more advantageous to turn to H>14400A/m.


2) External magnetic field direction


With regards to the bias magnetic field, usage at other than ±90° should be avoided. That causes a decrease in the combined magnetic field intensity, that is not recommended.





Package Outline Unit: mm

SONY CODE	M-118
EIAJ CODE	
JEDEC CODE	

0.2g