

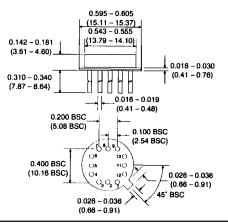
OVERDRIVE-PROTECTED WIDEBAND OP AMP

General Description

The SPT206 is a wideband, overdrive-protected operational amplifier designed for applications needing both speed and high drive capability (100mA). Utilizing a well-established current feedback architecture, the SPT206 exhibits performance far beyond that of conventional voltage feedback op amps. For example, the SPT206 has a bandwidth of 180MHz at a gain of +20 and settles to 0.1% in 19ns. Plus, the SPT206 has a combination of important features not found in other high-speed op amps.

The 100mA output current and the large signal bandwidth of 70MHz $(20V_{pp})$ make the SPT206 ideal for applications which involve both high signal amplitudes and heavy loads as in coaxial line driving applications.

Complete overdrive protection has been designed into the SPT206. This is critical for applications, such as ATE and instrumentation, which require protection from signal levels high enough to cause saturation of the amplifier. This feature allows the output of the op amp to be protected against short circuits using techniques developed for low-speed op amps. With this capability, even the fastest signal sources can feature effective short circuit protection.


The SPT206 is constructed using thin film resistor/bipolar transistor technology, and is available in the following versions:

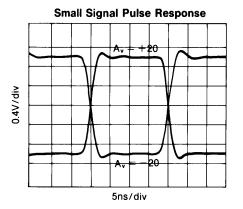
SPT206AIH -25°C to +85°C 12-pin TO-8 can SPT206AMH -55°C to +125°C 12-pin TO-8 can,

to +125°C 12-pin TO-8 can, features burn-in and hermetic testing **Typical Performance**

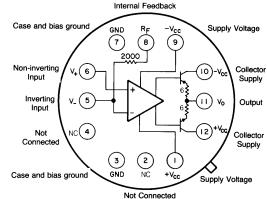
	gain setting						
parameter	+7	+20	+50	-1	-20	-50	units
 - 3dB bandwidth rise time 	220	180 2	90 4	220 1.6	145 2.5	90 4	MHz
slew rate	3.4	2 3.4	4 3.4	3.4	2.5 3.4	4 3.4	ns V/ns
settling time (to 0.1%)	22	19	17	20	19	18	ns

Package Dimensions

Features


- -3dB bandwidth of 180MHz
- 70MHz large signal bandwidth (20V_{pp})

SPT206


- 0.1% settling in 19ns
- Overdrive protected
- Output may be current limited
- Stable without compensation
- 3MΩ input impedance
- Direct replacement for CLC206

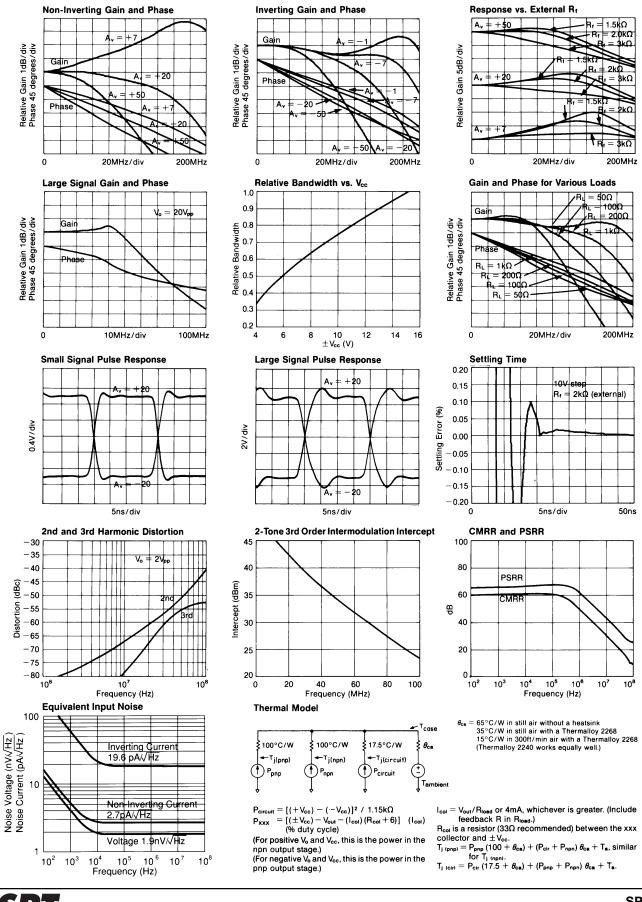
Applications

- Fast, precision A/D conversion
- Automatic test equipment
- Input/output amplifiers
- Photodiode, CCD preamps
- High-speed modems, radios
- Line drivers

Pin 8 provides access to a 2000Ω feedback resistor which can be connected to the output or left open if an external feedback resistor is desired.

Signal Processing Technologies, Inc.

4755 Forge Road, Colorado Springs, Colorado 80907, USA Phone: (719) 528-2300 FAX: (719) 528-2370 Website: http://www.spt.com E-Mail: sales@spt.com


SPT206 Electrical Cl		S (A _v = +2	0,V _{cc} = ±1	5V, R _L = 200	Ω, R _f = 2k	Ω; unless sp	ecified)
PARAMETERS	RAMETERS CONDITIONS		MAX & MIN RATINGS			UNITS	SYMBOL
Ambient Temperature	SPT206AIH	+25°C	−25°C	+25°C	+85°C		
Ambient Temperature	SPT206AMH	+25°C	−55°C	+25°C	+125°C		
FREQUENCY DOMAIN RESPON	FREQUENCY DOMAIN RESPONSE						
+-3dB bandwidth	$V_{out} < 2V_{pp}$	180	>150	>150	>135	MHz	SSBW
large signal bandwidth	$V_{out} < 20V_{pp}$	70	>54	>60	>60	MHz	FPBW
gain flatness	$V_{out} < 2V_{pp}$						
t peaking	0.1 to 40MHz	0	<0.3	<0.3	< 0.5	dB	GFPL
t peaking	>40MHz	0	< 0.5	<0.5	<0.8	dB	GFPH
t rolloff	at 75MHz		<0.7	<0.7	<0.7	dB	GFR
group delay	to 75MHz	3.0±.2	 <2.0	— <1.5	 <2.0	ns ∘	GD LPD
linear phase deviation	to 75MHz	0.6	< 2.0	< 1.5	<2.0		LPD
TIME DOMAIN RESPONSE							
rise and fall time	2V step	2.0	<2.5	<2.5	<2.7	ns	TRS
	20V step	7.0	<8.5	<8.5	<8.5	ns	TRL
settling time to 0.1%	10V step, note 2	22	<25	<25	<25	ns	TS
to 0.05%	10V step, note 2	24	<27	<27	<27	ns	TSP
overshoot	10V step	11	<15	<15	<15	%	OS
slew rate	20V _{pp} , 100MHz	3.4	>2.7	>3.0	>3.0	V/ns	SR
DISTORTION AND NOISE RESP	ONSE						
+2nd harmonic distortion	2Vpp, 20MHz	-59	<-50	<-50	<-50	dBc	HD2
+3rd harmonic distortion	2Vpp, 20MHz	-67	<-55	<-55	<55	dBc	HD3
equivalent input noise							
voltage	>100kHz	2.1	<3.0	<3.0	<3.5	nV/√ <u>Hz</u>	VN
inverting current	>100kHz	22	<30	<30	<35	pA/√ <u>Hz</u>	ICN
non-inverting current	>100kHz	5.0	<7.0	<7.0	<8.0	pA/√Hz	NCN
noise floor	>100kHz	- 157	<-154	<-154	<-153	dBm(1Hz)	SNF
integrated noise	1kHz to 150MHz	39	<55	<55	<61	uV	INV
noise floor	>5MHz	- 157	<-154	<-154	<-153	dBm(1Hz)	SNF
integrated noise	5MHz to 150MHz	39	<55	<55	<61	uV	INV
STATIC, DC PERFORMANCE							
*input offset voltage		3.5	<8.0	<8.0	<11.0	mV	VIO
average temperature coefficient	cient	11	<25	<25	<25	uW°C	DVIO
*input bias current	non-inverting	4.0	<30	<20	<20	uA	IBN
average temperature coefficient		20	<125	<125	<125	nA/°C	DIBN
*input bias current	inverting	2.0	<26	<10	<30	uA	IBI
average temperature coeffi	cient	40	<200	<200	<200	nA/°C	DIBI
*power supply rejection ratio		65	>55	>55	>55	dB	PSRR
common mode rejection ratio	na laad	60 29	>50 <31	>50 <31	>50 <33	dB mA	CMRR ICC
*supply current	no load	29	< 31	< 31	< 33		
MISCELLANEOUS PERFORMAN							
non-inverting input resistance	DC	3.0	>1.0	>1.0	>1.0	MΩ	RIN
non-inverting input capacitance	75MHz	5.2	<7.0	<7.0	<7.0	pF	CIN
output impedance	DC	—	<0.1	<0.1	<0.1	Ω	RO
output voltage range	no load	±12	>±11	>±11	>±11	V	VO
internal feedback resistor							
absolute tolerance		-	-	< 0.2	—	%	RFA
temperature coefficient				-100 ± 40		ppm/°C	RFTC
inverting input current self limit		3.3	<4.5	<4.5	<u> <4.7</u>	l mA	

Min/max ratings are based on product characterization and simulation. Individual parameters are tested as noted. Outgoing quality levels are determined from tested parameters.

Absolute Maximum Ratings	Recommended Operating Conditions					
$egin{array}{cc} & \pm 20V \ I_{out} & \pm 150 \text{mA} \ common mode input voltage} & \pm (V_{cc} -1)V \ differential input voltage & \pm 3V \end{array}$	V_{cc} $\pm 5V$ to $\pm 15V$ I_{out} ± 100 mAcommon mode input voltage $\pm (V_{cc} -5)V$ gain range: $+7$ to $+50, -1$ to -50					
thermal resistance: See thermal model. junction temperature +175°C operating temperature AIH: -25°C to +85°C AMH: -55°C to +125°C storage temperature -65°C to +150°C lead temperature (soldering 10s) +300°C	gain range.i i i i i i i i i i i i i i i i i i i					

SPT206 Typical Performance Characteristics ($T_A = +25^\circ$, $A_v = +20$, $V_{CC} = \pm 15V$, $R_L = 200\Omega$; unless specified)

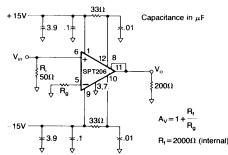


Figure 1: recommended non-inverting gain circuit

Overdrive Protection

Unlike most other high-speed op amps, the SPT206 is not damaged by saturation caused by overdriving input signals (where $V_{in}X$ gain> V_{out}). The SPT206 self limits the current at the inverting input when the output is saturated (see the inverting input current self limit specification); this ensures that the amplifier will not be damaged due to excessive internal currents during overdrive. For protection against input signals which would exceed either the maximum differential or common mode input voltage, the diode clamp circuits below may be used.

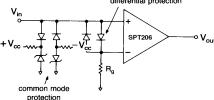
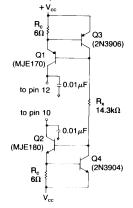


Figure 3: Diode clamp circuits for common mode and differential mode protection


Short Circuit Protection:

Damage caused by short circuits at the output may be prevented by limiting the output current to safe levels. The most simple current limit circuit calls for placing resistors between the output stage collector supplies and the output stage collectors (pins 12 and 10). The value of this resistor is determined by: V_c

$$R_{c} = \frac{v_{c}}{l_{1}} - R_{l}$$

Where I_I is the desired limit current and R_I is the minimum expected load resistance (0 Ω for a short to ground). Bypass capacitors of 0.01 μ F on should be used on the collectors as in Figures 1 and 2.

A more sophisticated current limit circuit which provides a limit current independent of R_1 is shown below.

Figure 4: Active current limit circuit (100mA)

With the component values indicated, current limiting occurs at 100mA. For other values of current limit (I₁), select R_cto equal V_{be}/I_L Where V_{be} is the base to emitter voltage drop of Q3 (or Q4) at a current of $[2V_{cc} - 1.4]/R_x$ where

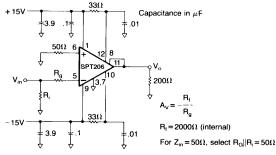


Figure 2: recommended inverting gain circuit

 $R_x \leq [(2V_{cc} - 1.4)/I_l] B_{min.}$ Also, B_{min} is the minimum beta of Q1 (or Q2) at a current of I_L Since the limit current depends on V_{be} , which is temperature dependent, the limit current is likewise temperature dependent.

Controlling Bandwidth and Passband Response

In most applications, a feedback resistor value of $2k\Omega$ will provide optimum performance; nonetheless, some applications may require a resistor of some other value. The response versus R_f plot on the previous page shows how decreasing R_f will increase bandwidth (and frequency response peaking, which may lead to instability). Conversely, large values of feedback resistance tend to roll off the response.

The best settling time performance requires the use of an external feedback resistor (use of the internal resistor results in a 0.1% to 0.2% settling tail). The settling performance may be improved slightly by adding a capacitance of 0.4pF in parallel with the feedback resistor (settling time specifications reflect performance with an external feedback resistor but with no external capacitance).

Noise Analysis

Approximate noise figure can be determined for the SPT206 using the equivalent input noise graph on the preceding page and the equations shown below.

Noise figure is for the network inside this box

$$F = 10 \log \left[1 + \frac{R_s}{R_N} + \frac{R_s}{4kT} \cdot \left(i_n^2 + \frac{V_n^2}{R_p^2} + \frac{R_F^2 i_i^2}{R_p^2 A_v^2} \right) \right]$$

where $R_p = \frac{R_s R_N}{R_s + R_s}$; $A_v = \frac{R_F}{R_s} + 1$

 $R_{\rm S} + R_{\rm N}$ $R_{\rm G}$

 $kT = 4.00 \times 10^{-21}$ Joules at 290°K

 V_n is spot noise voltage (V/ \sqrt{Hz})

- i_n is non-inverting spot noise current (A/ \sqrt{Hz})
- i_i is inverting spot noise current (A/ \sqrt{Hz})

Printed Circuit Layout

As with any high frequency device, a good PCB layout will enhance the performance of the SPT206. Good ground plane construction and power supply bypassing close to the package are critical to achieving full performance. In the non-inverting configuration, the amplifier is sensitive to stray capacitance to ground at the inverting input. Hence, the inverting node connections should be small with minimal stray capacitance to the ground plane. Shunt capacitance across the feedback resistor should not be used to compensate for this effect.

Evaluation PC boards (inverting and non-inverting) are available.