

Data Sheet

FEATURES:

- Organized as 1M x16
- Dual Bank Architecture for Concurrent Read/Write Operation
 - 16 Mbit Bottom Sector Protection
 SST36VF1601: 12 Mbit + 4 Mbit
- Single 2.7-3.6V for Read and Write Operations
- Superior Reliability
 - Endurance: 100,000 cycles (typical)Greater than 100 years Data Retention
- Low Power Consumption:
 - Active Current: 25 mAStandby Current: 4 μA
- Hardware Sector Protection/WP# Input Pin
 - Protects 4 outermost sectors (4 KWord) in the larger bank by driving WP# low and unprotects by driving WP# high
- Hardware Reset Pin (RST#)
 - Resets the internal state machine to reading array data
- Sector-Erase Capability
 - Uniform 1 KWord sectors
- Block-Erase Capability
 - Uniform 32 KWord blocks

- Fast Read Access Time
 - 70 ns
- Latched Address and Data
- Fast Erase and Word-Program (typical):
 - Sector-Erase Time: 18 ms
 Block-Erase Time: 18 ms
 Chip-Erase Time: 70 ms
 Word-Program Time: 14 μs
 Chip Rewrite Time: 8 seconds
- Automatic Write Timing
 - Internal V_{PP} Generation
- End-of-Write Detection
 - Toggle Bit
 - Data# Polling
 - Ready/Busy# pin
- CMOS I/O Compatibility
- Conforms to Common Flash Memory Interface (CFI)
- JEDEC Standards
 - Flash EEPROM Pinouts and command sets
- Packages Available
 - 48-lead TSOP (12mm x 20mm)
 - 48-ball TFBGA (8mm x 10mm)

PRODUCT DESCRIPTION

The SST36VF1601 is 1M x16 CMOS Concurrent Read/Write Flash Memory manufactured with SST's proprietary, high performance CMOS SuperFlash technology. The split-gate cell design and thick oxide tunneling injector attain better reliability and manufacturability compared with alternate approaches. The SST36VF1601 writes (Program or Erase) with a 2.7-3.6V power supply. The SST36VF1601 device conforms to JEDEC standard pinouts for x16 memories.

Featuring high performance Word-Program, the SST36VF1601 device provides a typical Word-Program time of 14 µsec. The devices use Toggle Bit or Data# Polling to detect the completion of the Program or Erase operation. To protect against inadvertent write, the SST36VF1601 device has on-chip hardware and Software Data Protection schemes. Designed, manufactured, and tested for a wide spectrum of applications, the

SST36VF1601 device is offered with a guaranteed endurance of 10,000 cycles. Data retention is rated at greater than 100 years.

The SST36VF1601 is suited for applications that require convenient and economical updating of program, configuration, or data memory. For all system applications, the SST36VF1601 significantly improves performance and relilowering power consumption. ability, while SST36VF1601 inherently uses less energy during Erase and Program than alternative flash technologies. The total energy consumed is a function of the applied voltage, current, and time of application. Since for any given voltage range, the SuperFlash technology uses less current to program and has a shorter erase time, the total energy consumed during any Erase or Program operation is less than alternative flash technologies. The SST36VF1601 also improves flexibility while lowering the cost for program, data, and configuration storage applications.

Data Sheet

The SuperFlash technology provides fixed Erase and Program times, independent of the number of Erase/Program cycles that have occurred. Therefore the system software or hardware does not have to be modified or de-rated as is necessary with alternative flash technologies, whose Erase and Program times increase with accumulated Erase/Program cycles.

To meet high density, surface mount requirements, the SST36VF1601 is offered in 48-lead TSOP and 48-ball TFBGA packages. See Figures 2 and 3 for pinouts.

Device Operation

Commands are used to initiate the memory operation functions of the device. Commands are written to the device using standard microprocessor write sequences. A command is written by asserting WE# low while keeping CE# low. The address bus is latched on the falling edge of WE# or CE#, whichever occurs last. The data bus is latched on the rising edge of WE# or CE#, whichever occurs first.

Concurrent Read/Write Operation

Dual bank architecture of SST36VF1601 device allows the Concurrent Read/Write operation whereby the user can read from one bank while program or erase in the other bank. This operation can be used when the user needs to read system code in one bank while updating data in the other bank.

CONCURRENT READ/WRITE STATE

Bank 1	Bank 2			
Read	No Operation			
Read	Write			
Write	Read			
Write	No Operation			
No Operation	Read			
No Operation	Write			

Note: For the purposes of this table, write means to perform Block-, Sector-, or Chip-Erase or Word-Program operations as applicable to the appropriate bank.

Read Operation

The Read operation of the SST36VF1601 is controlled by CE# and OE#, both have to be low for the system to obtain data from the outputs. CE# is used for device selection. When CE# is high, the chip is deselected and only standby power is consumed. OE# is the output control and is used to gate data on the output pins. The data bus is in high impedance state when either CE# or OE# is high. Refer to the Read cycle timing diagram for further details (Figure 4).

Word-Program Operation

The SST36VF1601 is programmed on a word-by-word basis. Before programming, one must ensure that the sector, in which the word which is being programmed exists, is fully erased. The Program operation consists of three steps. The first step is the three-byte load sequence for Software Data Protection. The second step is to load word address and word data. During the Word-Program operation, the addresses are latched on the falling edge of either CE# or WE#, whichever occurs last. The data is latched on the rising edge of either CE# or WE#, whichever occurs first. The third step is the internal Program operation which is initiated after the rising edge of the fourth WE# or CE#, whichever occurs first. The Program operation, once initiated, will be completed typically within 10 µs. See Figures 5 and 6 for WE# and CE# controlled Program operation timing diagrams and Figure 19 for flowcharts. During the Program operation, the only valid reads are Data# Polling and Toggle Bit. During the internal Program operation, the host is free to perform additional tasks. Any commands issued during the internal Program operation are ignored.

Sector- (Block-) Erase Operation

The Sector- (Block-) Erase operation allows the system to erase the device on a sector-by-sector (or block-by-block) basis. The SST36VF1601 offers both Sector-Erase and Block-Erase mode. The sector architecture is based on uniform sector size of 1 KWord. The Block-Erase mode is based on uniform block size of 32 KWord. The Sector-Erase operation is initiated by executing a six-byte command sequence with Sector-Erase command (30H) and sector address (SA) in the last bus cycle. The Block-Erase operation is initiated by executing a six-byte command sequence with Block-Erase command (50H) and block address (BA) in the last bus cycle. The sector or block address is latched on the falling edge of the sixth WE# pulse, while the command (30H or 50H) is latched on the rising edge of the sixth WE# pulse. The internal Erase operation begins after the sixth WE# pulse. See Figures 10 and 11 for timing waveforms. Any commands issued during the Sector- or Block-Erase operation are ignored.

Chip-Erase Operation

The SST36VF1601 provides a Chip-Erase operation, which allows the user to erase all unprotected sectors/blocks to the "1" state. This is useful when the device must be quickly erased.

Data Sheet

The Chip-Erase operation is initiated by executing a sixbyte command sequence with Chip-Erase command (10H) at address 5555H in the last byte sequence. The Erase operation begins with the rising edge of the sixth WE# or CE#, whichever occurs first. During the Erase operation, the only valid Read is Toggle Bit or Data# Polling. See Table 4 for the command sequence, Figure 9 for timing diagram, and Figure 22 for the flowchart. Any commands issued during the Chip-Erase operation are ignored.

Write Operation Status Detection

The SST36VF1601 provides one hardware and two software means to detect the completion of a Write (Program or Erase) cycle, in order to optimize the system Write cycle time. The hardware detection uses the Ready/Busy# (RY/BY#) output pin. The software detection includes two status bits: Data# Polling (DQ $_7$) and Toggle Bit (DQ $_6$). The End-of-Write detection mode is enabled after the rising edge of WE#, which initiates the internal Program or Erase operation.

The actual completion of the nonvolatile write is asynchronous with the system; therefore, either a Ready/Busy# (RY/BY#), a Data# Polling (DQ7) or Toggle Bit (DQ6) read may be simultaneous with the completion of the Write cycle. If this occurs, the system may possibly get an erroneous result, i.e., valid data may appear to conflict with either DQ7 or DQ6. In order to prevent spurious rejection, if an erroneous result occurs, the software routine should include a loop to read the accessed location an additional two (2) times. If both reads are valid, then the device has completed the Write cycle, otherwise the rejection is valid.

Ready/Busy# (RY/BY#)

The SST36VF1601 includes a Ready/Busy# (RY/BY#) output signal. RY/BY# is actively pulled low while during an internal Erase or Program operation is in progress. RY/BY# is an open drain output that allows several devices to be tied in parallel to V_{DD} via an external pull up resistor. RY/BY# is high impedance whenever CE# is high or RST# is low. There is a 1 μ s bus recovery time (T_{BR}) required before valid data can be read on the data bus. New commands can be entered immediately after RY/BY# goes high.

Data# Polling (DQ₇)

When the SST36VF1601 is in the internal Program operation, any attempt to read DQ_7 will produce the complement of the true data. Once the Program operation is completed, DQ_7 will produce true data. During internal Erase operation, any attempt to read DQ_7 will produce a '0'. Once the internal Erase operation is completed, DQ_7 will produce a

'1'. The Data# Polling is valid after the rising edge of fourth WE# (or CE#) pulse for Program operation. For Sector-, Block-, or Chip-Erase, the Data# Polling is valid after the rising edge of sixth WE# (or CE#) pulse. See Figure 7 for Data# Polling (DQ₇) timing diagram and Figure 20 for a flowchart. There is a 1 μs bus recovery time (T_{BR}) required before valid data can be read on the data bus. New commands can be entered immediately after DQ₇ becomes true data.

Toggle Bit (DQ₆)

During the internal Program or Erase operation, any consecutive attempts to read DQ_6 will produce alternating 1s and 0s, i.e., toggling between 1 and 0. When the internal Program or Erase operation is completed, the DQ_6 bit will stop toggling. The Toggle Bit is valid after the rising edge of fourth WE# (or CE#) pulse for Program operation. For Sector-, Block- or Chip-Erase, the Toggle Bit is valid after the rising edge of sixth WE# (or CE#) pulse. See Figure 8 for Toggle Bit timing diagram and Figure 20 for a flowchart. There is a 1 μ s bus recovery time (TBR) required before valid data can be read on the data bus. New commands can be entered immediately after DQ_6 no longer toggles.

Data Protection

The SST36VF1601 provides both hardware and software features to protect nonvolatile data from inadvertent writes.

Hardware Data Protection

Noise/Glitch Protection: A WE# or CE# pulse of less than 5 ns will not initiate a Write cycle.

 V_{DD} Power Up/Down Detection: The Write operation is inhibited when V_{DD} is less than 1.5V.

<u>Write Inhibit Mode:</u> Forcing OE# low, CE# high, or WE# high will inhibit the Write operation. This prevents inadvertent writes during power-up or power-down.

Hardware Block Protection

The SST36VF1601 provides a hardware block protection which protects the outermost 4 KWord in the larger bank. The block is protected when WP# is held low. See Figure 1 for Block-Protection location.

A user can disable block protection by driving WP# high thus allowing erase or program of data into the protected sectors. WP# must be held high prior to issuing the write command and remain stable until after the entire Write operation has completed.

Data Sheet

Hardware Reset (RST#)

The RST# pin provides a hardware method of resetting the device to read array data. When the RST# pin is held low for at least T_{RP} , any in-progress operation will terminate and return to Read mode (see Figure 16). When no internal Program/Erase operation is in progress, a minimum period of T_{RHR} is required after RST# is driven high before a valid Read can take place (see Figure 15).

The Erase operation that has been interrupted needs to be reinitiated after the device resumes normal operation mode to ensure data integrity.

Software Data Protection (SDP)

The SST36VF1601 provides the JEDEC standard Software Data Protection scheme for all data alteration operations, i.e., Program and Erase. Any Program operation requires the inclusion of the three-byte sequence. The three-byte load sequence is used to initiate the Program operation, providing optimal protection from inadvertent Write operations, e.g., during the system power-up or power-down. Any Erase operation requires the inclusion of six-byte sequence. The SST36VF1601 is shipped with the Software Data Protection permanently enabled. See Table 4 for the specific software command codes. During SDP command sequence, invalid commands will abort the device to Read mode within $T_{\rm RC}$. The contents of DQ_{15} - DQ_{8} can be $V_{\rm IL}$ or $V_{\rm IH}$, but no other value during any SDP command sequence.

Common Flash Memory Interface (CFI)

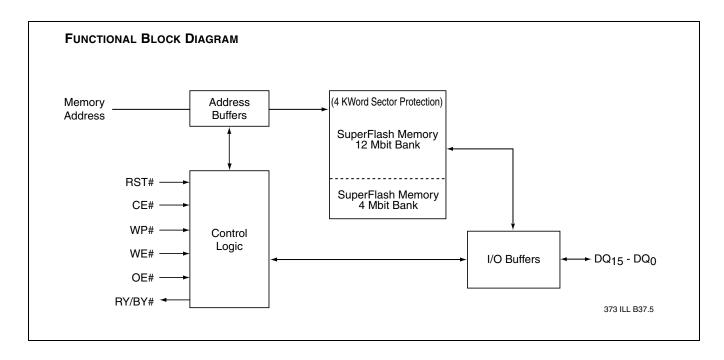
The SST36VF1601 also contains the CFI information to describe the characteristics of the device. In order to enter the CFI Query mode, the system must write three-byte sequence, same as Software ID Entry command with 98H (CFI Query command) to address 5555H in the last byte

sequence. Once the device enters the CFI Query mode, the system can read CFI data at the addresses given in Tables 5 through 7. The system must write the CFI Exit command to return to Read mode from the CFI Query mode.

Product Identification

The Product Identification mode identifies the device and manufacturer. For details, see Table 4 for software operation, Figure 12 for the Software ID Entry and Read timing diagram and Figure 21 for the Software ID Entry command sequence flowchart.

TABLE 1: PRODUCT IDENTIFICATION


	Word	Data
Manufacturer's ID	0000H	00BFH
Device ID		
SST36VF1601	0001H	2761H

T1.1 373

Product Identification Mode Exit/CFI Mode Exit

In order to return to the standard Read mode, the Software Product Identification mode must be exited. Exit is accomplished by issuing the Software ID Exit command sequence, which returns the device to the Read mode. This command may also be used to reset the device to the Read mode after any inadvertent transient condition that apparently causes the device to behave abnormally, e.g., not read correctly. Please note that the Software ID Exit/ CFI Exit command is ignored during an internal Program or Erase operation. See Table 4 for the software command code, Figure 14 for timing waveform and Figure 21 for a flowchart.

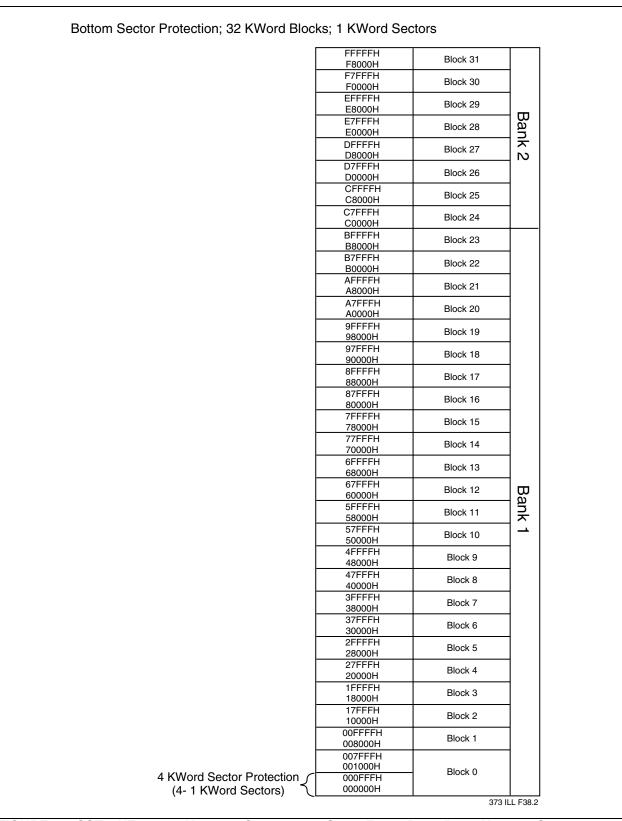


FIGURE 1: SST36VF1601, 1 MBIT x16 CONCURRENT SUPERFLASH DUAL-BANK MEMORY ORGANIZATION

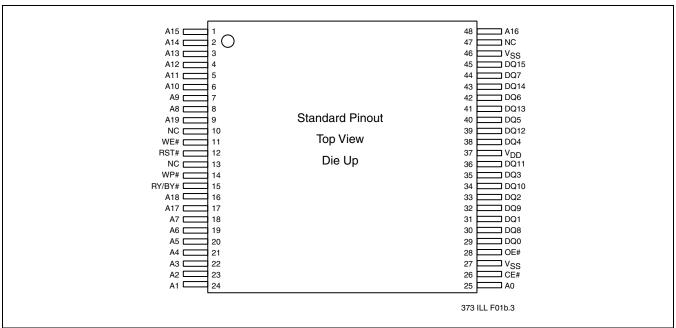


FIGURE 2: PIN ASSIGNMENTS FOR 48-LEAD TSOP (12MM X 20MM)

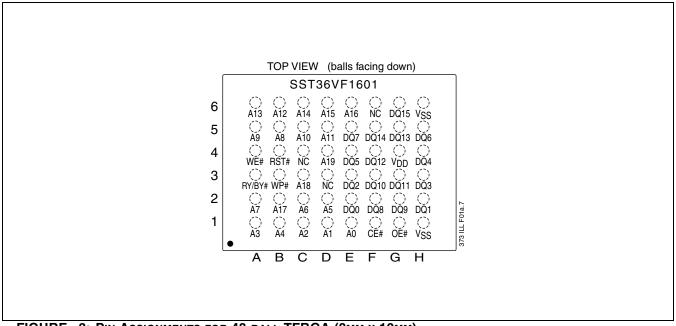


FIGURE 3: PIN ASSIGNMENTS FOR 48-BALL TFBGA (8MM x 10MM)

Data Sheet

TABLE 2: PIN DESCRIPTION

Symbol	Name	Functions
A ₁₉ -A ₀	Address Inputs	To provide memory addresses. During Sector-Erase and Hardware Sector Protection, A ₁₉ -A ₁₀ address lines will select the sector. During Block-Erase A ₁₉ -A ₁₅ address lines will select the block.
DQ ₁₅ -DQ ₀	Data Input/output	To output data during Read cycles and receive input data during Write cycles Data is internally latched during a Write cycle. The outputs are in tri-state when OE# or CE# is high.
CE#	Chip Enable	To activate the device when CE# is low.
OE#	Output Enable	To gate the data output buffers
WE#	Write Enable	To control the Write operations
RST#	Hardware Reset	To reset and return the device to Read mode
RY/BY#	Ready/Busy#	To output the status of a Program or Erase Operation RY/BY# is a open drain output, so a $10K\Omega$ - $100K\Omega$ pull-up resistor is required to allow RY/BY# to transition high indicating the device is ready to read.
WP#	Write Protect	To protect and unprotect the bottom 4 sectors from Erase or Program operation.
V_{DD}	Power Supply	To provide 2.7-3.6V power supply voltage
V _{SS}	Ground	
NC	No Connection	Unconnected pins

T2.6 373

TABLE 3: OPERATION MODES SELECTION

Mode	CE#	OE#	WE#	DQ	Address
Read	V _{IL}	V _{IL}	V _{IH}	D _{OUT}	A _{IN}
Program	V_{IL}	V_{IH}	V_{IL}	D _{IN}	A _{IN}
Erase	V _{IL}	V _{IH}	V _{IL}	X ¹	Sector or block address, XXH for Chip-Erase
Standby	V_{IH}	Х	Х	High Z	×
Write Inhibit	Х	V_{IL}	Х	High Z / D _{OUT}	×
	Х	Х	V _{IH}	High Z / D _{OUT}	×
Product Identification					
Software Mode	V_{IL}	VIL	V _{IH}	Manufacturer's ID (00BFH)	See Table 4
				Device ID ²	

T3.6 373

^{1.} X can be VIL or VIH, but no other value.

^{2.} Device ID = 2761H

Data Sheet

TABLE 4: SOFTWARE COMMAND SEQUENCE

Command 1st Bus Sequence Write Cycle		2nd Bus Write Cycle		3rd Bus Write Cycle		4th Bus Write Cycle		5th Bus Write Cycle		6th Bus Write Cycle		
	Addr ¹	Data ²	Addr ¹	Data ²								
Word-Program	5555H	AAH	2AAAH	55H	5555H	A0H	WA ³	Data				
Sector-Erase	5555H	AAH	2AAAH	55H	5555H	80H	5555H	AAH	2AAAH	55H	SA _X ⁴	30H
Block-Erase	5555H	AAH	2AAAH	55H	5555H	80H	5555H	AAH	2AAAH	55H	BA _X ⁴	50H
Chip-Erase	5555H	AAH	2AAAH	55H	5555H	80H	5555H	AAH	2AAAH	55H	5555H	10H
Software ID Entry ^{5,6}	5555H	AAH	2AAAH	55H	5555H	90H						
CFI Query Entry	5555H	AAH	2AAAH	55H	5555H	98H						
Software ID Exit/ CFI Exit	5555H	AAH	2AAAH	55H	5555H	F0H						

T4.4 373

- 1. Address format A₁₄-A₀ (Hex), Addresses A₁₉- A₁₅ can be V_{IL} or V_{IH}, but no other value, for the Command sequence.
- 2. DQ_{15} - DQ_{8} can be V_{IL} or V_{IH} , but no other value, for the Command sequence
- 3. WA = Program word address
- 4. SA_X for Sector-Erase; uses A_{19} - A_{10} address lines BA_X for Block-Erase; uses A_{19} - A_{15} address lines
- 5. The device does not remain in Software Product Identification mode if powered down.
- 6. With A_{19} - A_1 = 0; SST Manufacturer's ID = 00BFH, is read with A_0 = 0 SST36VF1601 Device ID = 2761H, is read with A_0 = 1

TABLE 5: CFI QUERY IDENTIFICATION STRING1

Address	Data	Data
10H	0051H	Query Unique ASCII string "QRY"
11H	0052H	
12H	0059H	
13H	0001H	Primary OEM command set
14H	0007H	
15H	0000H	Address for Primary Extended Table
16H	0000H	
17H	0000H	Alternate OEM command set (00H = none exists)
18H	0000H	
19H	0000H	Address for Alternate OEM extended Table (00H = none exits)
1AH	0000H	

1. Refer to CFI publication 100 for more details.

T5.0 373

Data Sheet

TABLE 6: SYSTEM INTERFACE INFORMATION

Address	Data	Data			
1BH	0027H	/ _{DD} Min (Program/Erase)			
		DQ ₇ -DQ ₄ : Volts, DQ ₃ -DQ ₀ : 100 millivolts			
1CH	0036H	V _{DD} Max (Program/Erase) DQ ₇ -DQ ₄ : Volts, DQ ₃ -DQ ₀ : 100 millivolts			
1DH	0000H	V_{PP} min (00H = no V_{PP} pin)			
1EH	0000H	V_{PP} max (00H = no V_{PP} pin)			
1FH	0004H	Typical time out for Word-Program 2^N µs (2^4 = 16 µs)			
20H	0000H	Typical time out for min size buffer program 2^{N} µs (00H = not supported)			
21H	0004H	Typical time out for individual Sector/Block-Erase 2^{N} ms (2^{4} = 16 ms)			
22H	0006H	Typical time out for Chip-Erase 2 ^N ms (2 ⁶ = 64 ms)			
23H	0001H	Maximum time out for Word-Program 2^N times typical $(2^1 \times 2^4 = 32 \mu s)$			
24H	0000H	Maximum time out for buffer program 2 ^N times typical			
25H	0001H	Maximum time out for individual Sector/Block-Erase 2^N times typical $(2^1 \times 2^4 = 32 \text{ ms})$			
26H	0001H	Maximum time out for Chip-Erase 2 ^N times typical (2 ¹ x 2 ⁶ = 128 ms)			

T6.0 373

TABLE 7: DEVICE GEOMETRY INFORMATION

Address	Data	Data		
27H	0015H	Device size = 2 ^N Bytes (15H = 21; 2 ²¹ = 2 MByte)		
28H	0001H	Flash Device Interface description; 0001H = x16-only asynchronous interface		
29H	0000H			
2AH	0000H	Maximum number of bytes in multi-byte write = 2 ^N (00H = not supported)		
2BH	0000H			
2CH	0002H	Number of Erase Sector/Block sizes supported by device		
2DH	00FFH	Sector Information (y + 1 = Number of sectors; z x 256B = sector size)		
2EH	0003H	y = 1023 + 1 = 1024 sectors (03FFH = 1023)		
2FH	0008H			
30H	0000H	z = 8 x 256 Bytes = 4 KByte/sector (0008H = 8)		
31H	003FH	Block Information (y + 1 = Number of blocks; z x 256B = block size)		
32H	0000H	y = 31 + 1 = 32 blocks (001FH = 31)		
33H	0000H			
34H	0001H	z = 256 x 256 Bytes = 64 KByte/block (0100H = 256)		

T7.3 373

Data Sheet

Absolute Maximum Stress Ratings (Applied conditions greater than those listed under "Absolute Maximum Stress Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these conditions or conditions greater than those defined in the operational sections of this data sheet is not implied. Exposure to absolute maximum stress rating conditions may affect device reliability.)

Temperature Under Bias	55°C to +125°C
Storage Temperature	65°C to +150°C
D. C. Voltage on Any Pin to Ground Potential	0.5V to V _{DD} +0.5V
Transient Voltage (<20 ns) on Any Pin to Ground Potential	2.0V to V _{DD} +2.0V
Package Power Dissipation Capability (Ta = 25°C)	1.0W
Surface Mount Lead Soldering Temperature (3 Seconds)	240°C
Output Short Circuit Current	50 mA

OPERATING RANGE:

Range	Ambient Temp	V_{DD}
Commercial	0°C to +70°C	2.7-3.6V
Extended	-20°C to +85°C	2.7-3.6V

AC CONDITIONS OF TEST

Input Rise/Fall Time	5 ns
Output Load	$C_L = 30 pF$
See Figures 17 and 18	

Data Sheet

TABLE 8: DC OPERATING CHARACTERISTICS V_{DD} = 2.7-3.6V

			Limits		
Symbol	Parameter	Min	Max	Units	Test Conditions
I _{DD}	Active V _{DD} Current				Address input=V _{IL} /V _{IH} , at f=1/T _{RC} Min, V _{DD} =V _{DD} Max
	Read		35	mA	CE#=OE#=V _{IL} , WE#=V _{IH} , all I/Os open
	Program and Erase		40	mA	CE#=V _{IL} , OE#=V _{IH}
	Concurrent Read/Write		75	mA	
I _{SB}	Standby V _{DD} Current		20	μΑ	CE#=V _{IHC} , V _{DD} =V _{DD} Max
I _{RT}	Reset V _{DD} Current		20	μΑ	RST# = $V_{SS} \pm 0.3V$
ILI	Input Leakage Current		1	μΑ	V_{IN} =GND to V_{DD} , V_{DD} = V_{DD} Max
I_{LO}	Output Leakage Current		1	μΑ	V_{OUT} =GND to V_{DD} , V_{DD} = V_{DD} Max
V _{IL}	Input Low Voltage		0.8	V	V _{DD} =V _{DD} Min
V_{ILC}	Input Low Voltage (CMOS)		0.3	V	V _{DD} =V _{DD} Max
V_{IH}	Input High Voltage	0.7 V _{DD}		V	V _{DD} =V _{DD} Max
V_{IHC}	Input High Voltage (CMOS)	V _{DD} -0.3		V	V _{DD} =V _{DD} Max
V _{OL}	Output Low Voltage		0.2	V	I _{OL} =100 μA, V _{DD} =V _{DD} Min
V_{OH}	Output High Voltage	V _{DD} -0.2		V	I _{OH} =-100 μA, V _{DD} =V _{DD} Min

T8.6 373

TABLE 9: RECOMMENDED SYSTEM POWER-UP TIMINGS

Symbol	Parameter	Minimum	Units
T _{PU-READ} 1	Power-up to Read Operation	100	μs
T _{PU-WRITE} ¹	Power-up to Write Operation	100	μs

T9.2 373

TABLE 10: CAPACITANCE (Ta = 25°C, f=1 Mhz, other pins open)

Parameter	Description	Test Condition	Maximum
C _{I/O} ¹	I/O Pin Capacitance	$V_{I/O} = 0V$	10 pF
C _{IN} ¹	Input Capacitance	$V_{IN} = 0V$	10 pF

T10.0 373

TABLE 11: RELIABILITY CHARACTERISTICS

Symbol	Parameter	Minimum Specification	Units	Test Method
N _{END} ¹	Endurance	10,000	Cycles	JEDEC Standard A117
T _{DR} ¹	Data Retention	100	Years	JEDEC Standard A103
I _{LTH} 1	Latch Up	100 + I _{DD}	mA	JEDEC Standard 78

T11.1 373

^{1.} This parameter is measured only for initial qualification and after a design or process change that could affect this parameter.

^{1.} This parameter is measured only for initial qualification and after a design or process change that could affect this parameter.

^{1.} This parameter is measured only for initial qualification and after a design or process change that could affect this parameter.

Data Sheet

AC CHARACTERISTICS

TABLE 12: READ CYCLE TIMING PARAMETERS VDD = 2.7-3.6V

Symbol	Parameter	SST36VF1601-70		
		Min	Max	Units
T _{RC}	Read Cycle Time	70		ns
T _{CE}	Chip Enable Access Time		70	ns
T_{AA}	Address Access Time		70	ns
T _{OE}	Output Enable Access Time		35	ns
T _{CLZ} ¹	CE# Low to Active Output	0		ns
T _{OLZ} ¹	OE# Low to Active Output	0		ns
T _{CHZ} ¹	CE# High to High-Z Output		20	ns
T _{OHZ} ¹	OE# High to High-Z Output		20	ns
T _{OH} ¹	Output Hold from Address Change	0		ns
T _{RP} ¹	RST# Pulse Width	500		ns
T _{RHR} ¹	RST# High before Read	50		ns
$T_{RY}^{1,2}$	RST# Pin Low to Read Mode		150	μs

T12.9 373

TABLE 13: PROGRAM/ERASE CYCLE TIMING PARAMETERS

Symbol	Parameter	Min	Max	Units
T _{BP}	Word-Program Time		20	μs
T _{AS}	Address Setup Time	0		ns
T_{AH}	Address Hold Time	40		ns
T_{CS}	WE# and CE# Setup Time	0		ns
T _{CH}	WE# and CE# Hold Time	0		ns
T _{OES}	OE# High Setup Time	0		ns
T _{OEH}	OE# High Hold Time	10		ns
T _{CP}	CE# Pulse Width	40		ns
T_WP	WE# Pulse Width	40		ns
T _{WPH} ¹	WE# Pulse Width High	30		ns
T _{CPH} ¹	CE# Pulse Width High	30		ns
T_{DS}	Data Setup Time	30		ns
T _{DH} ¹	Data Hold Time	0		ns
T_{IDA}^{1}	Software ID Access and Exit Time		150	ns
T_SE	Sector-Erase		25	ms
T_BE	Block-Erase		25	ms
T _{SCE}	Chip-Erase		100	ms
T _{BY} ¹	RY/BY# Delay Time	90		ns
T_{BR}	Bus Recovery Time		1	μs

T13.6 373

^{1.} This parameter is measured only for initial qualification and after a design or process change that could affect this parameter.

^{2.} This parameter applies to Sector-Erase, Block-Erase and Program operations. This parameter does not apply to Chip-Erase operations.

^{1.} This parameter is measured only for initial qualification and after a design or process change that could affect this parameter.

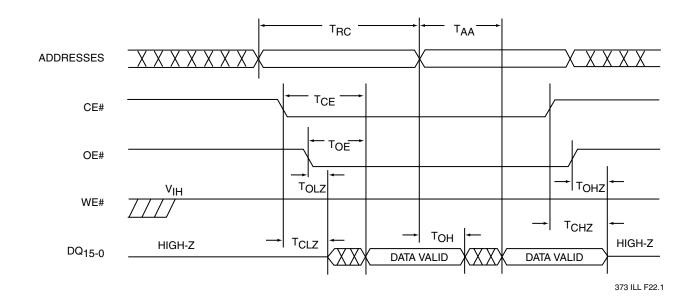


FIGURE 4: READ CYCLE TIMING DIAGRAM

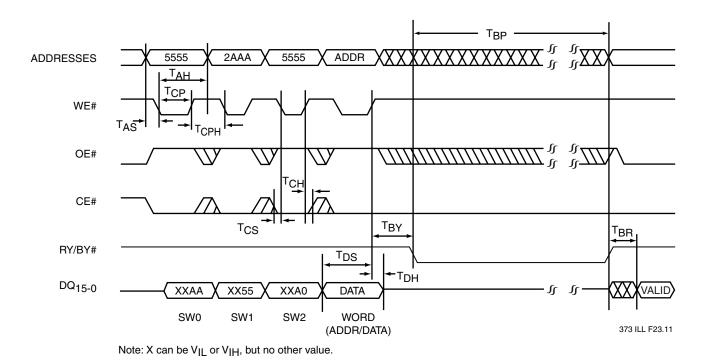


FIGURE 5: WE# CONTROLLED WORD-PROGRAM CYCLE TIMING DIAGRAM

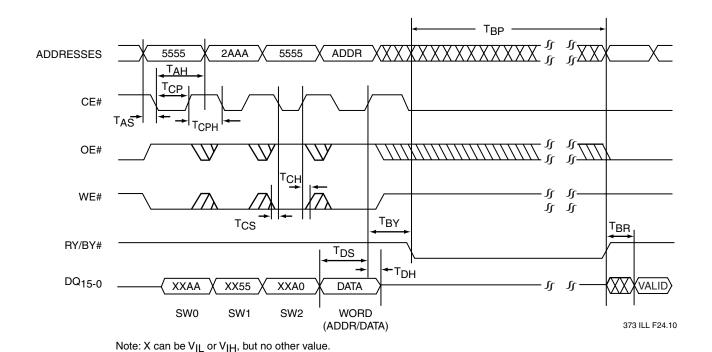


FIGURE 6: CE# CONTROLLED WORD-PROGRAM CYCLE TIMING DIAGRAM

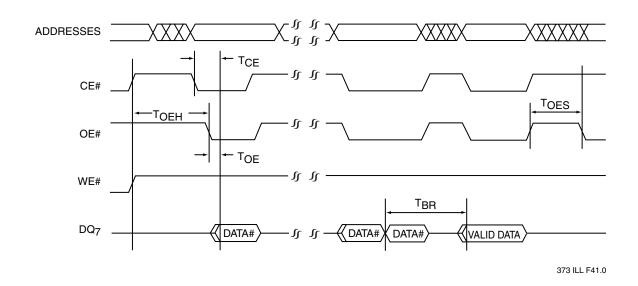
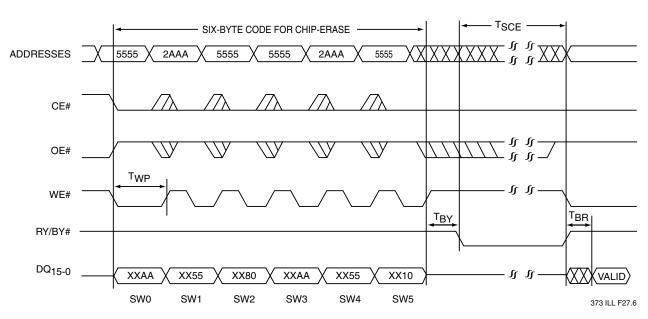
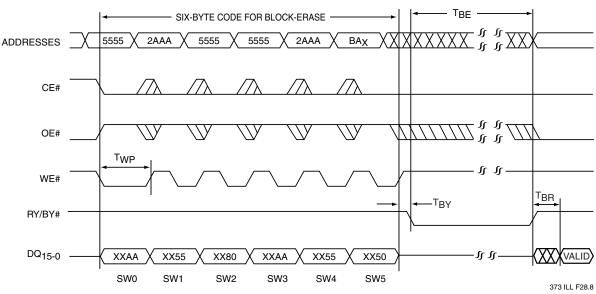



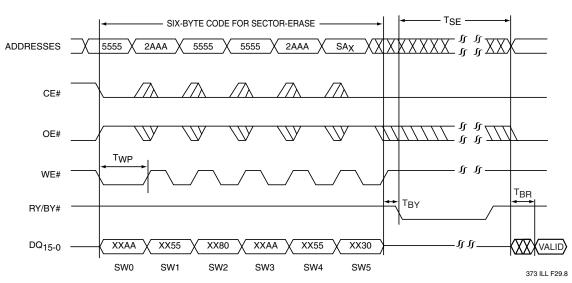
FIGURE 7: DATA# POLLING TIMING DIAGRAM

FIGURE 8: TOGGLE BIT TIMING DIAGRAM



Note: This device also supports CE# controlled Chip-Erase operation. The WE# and CE# signals are interchageable as long as minimum timings are met. (See Table 13) X can be V_{IL} or V_{IH}, but no other value.

FIGURE 9: WE# CONTROLLED CHIP-ERASE TIMING DIAGRAM



Data Sheet

Note: This device also supports CE# controlled Block-Erase operation. The WE# and CE# signals are interchageable as long as minimum timings are met. (See Table 13) $BA\chi = Block \ Address \\ X \ can \ be \ V_{IL} \ or \ V_{IH}, \ but \ no \ other \ value.$

FIGURE 10: WE# CONTROLLED BLOCK-ERASE TIMING DIAGRAM

Note: This device also supports CE# controlled Sector-Erase operation. The WE# and CE# signals are interchageable as long as minimum timings are met. (See Table 13) $SA\chi = Sector \ Address \\ X \ can be \ V_{IL} \ or \ V_{IH}, \ but \ no \ other \ value.$

FIGURE 11: WE# CONTROLLED SECTOR-ERASE TIMING DIAGRAM

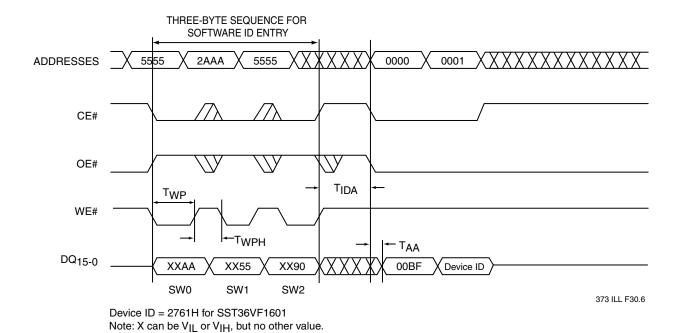


FIGURE 12: SOFTWARE ID ENTRY AND READ

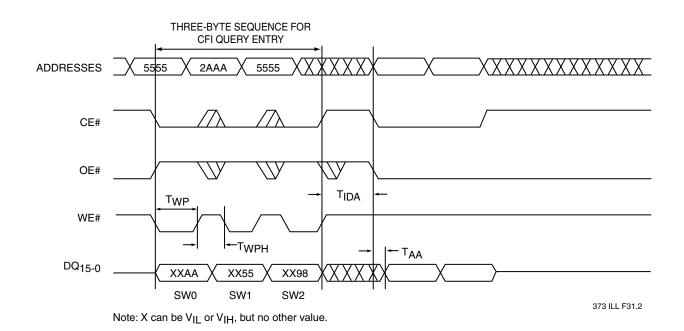
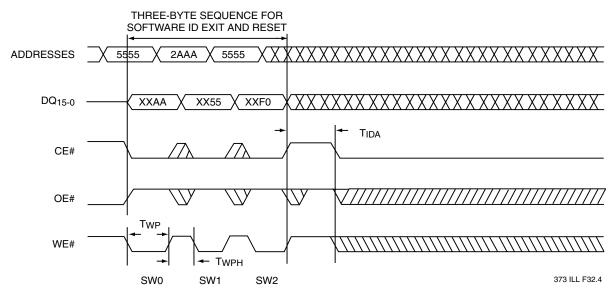



FIGURE 13: CFI ENTRY AND READ

Note: X can be V_{IL} or V_{IH}, but no other value.

FIGURE 14: SOFTWARE ID EXIT/CFI EXIT

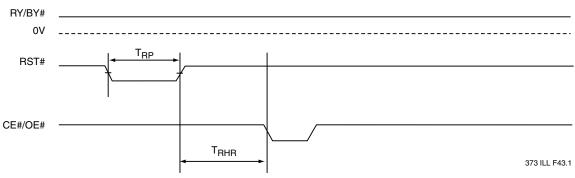


FIGURE 15: RST# TIMING (WHEN NO INTERNAL OPERATION IS IN PROGRESS)

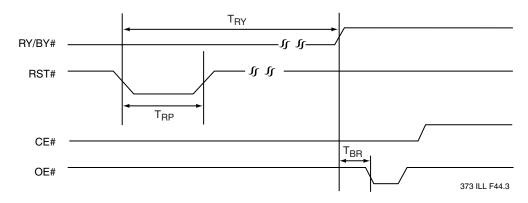
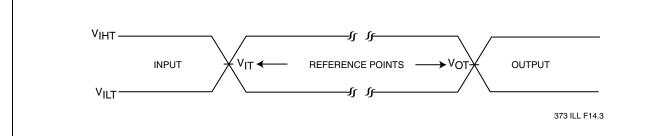



FIGURE 16: RST# TIMING (DURING SECTOR- OR BLOCK-ERASE OPERATION)

Data Sheet

AC test inputs are driven at V_{IHT} (0.9 V_{DD}) for a logic "1" and V_{ILT} (0.1 V_{DD}) for a logic "0". Measurement reference points for inputs and outputs are V_{IT} (0.5 V_{DD}) and V_{OT} (0.5 V_{DD}). Input rise and fall times (10% \leftrightarrow 90%) are <5 ns.

Note: V_{IT} - V_{INPUT} Test V_{OT} - V_{OUTPUT} Test V_{IHT} - V_{INPUT} HIGH Test V_{ILT} - V_{INPUT} LOW Test

FIGURE 17: AC INPUT/OUTPUT REFERENCE WAVEFORMS

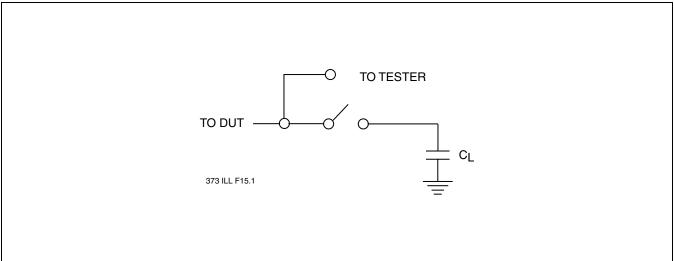


FIGURE 18: A TEST LOAD EXAMPLE

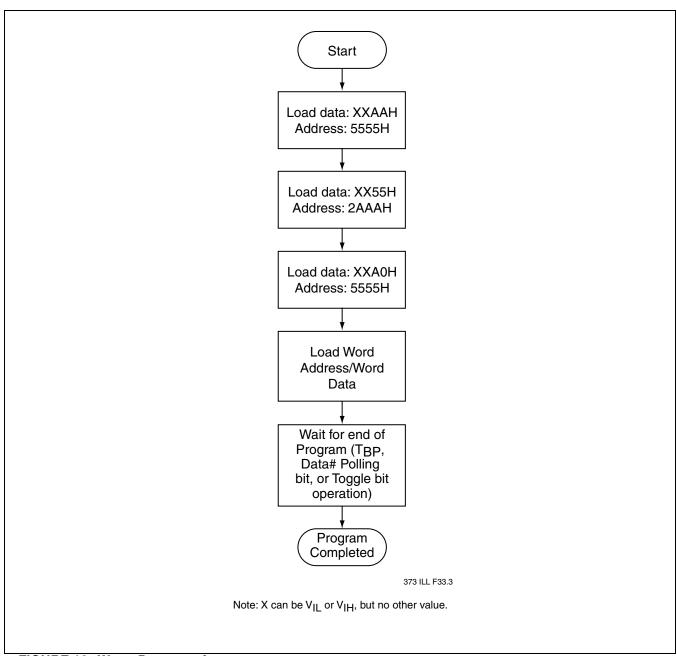


FIGURE 19: WORD-PROGRAM ALGORITHM

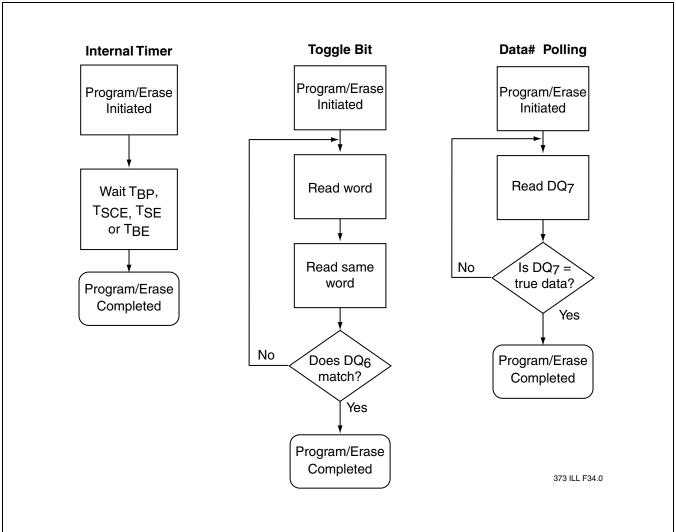


FIGURE 20: WAIT OPTIONS

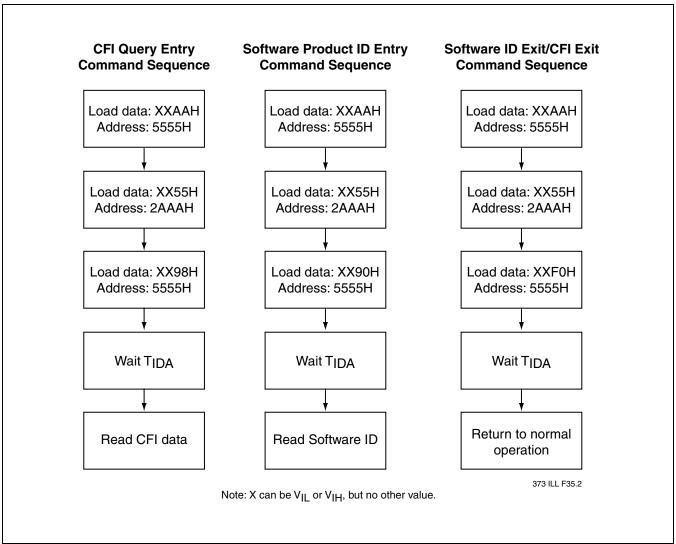


FIGURE 21: SOFTWARE PRODUCT ID/CFI COMMAND FLOWCHARTS

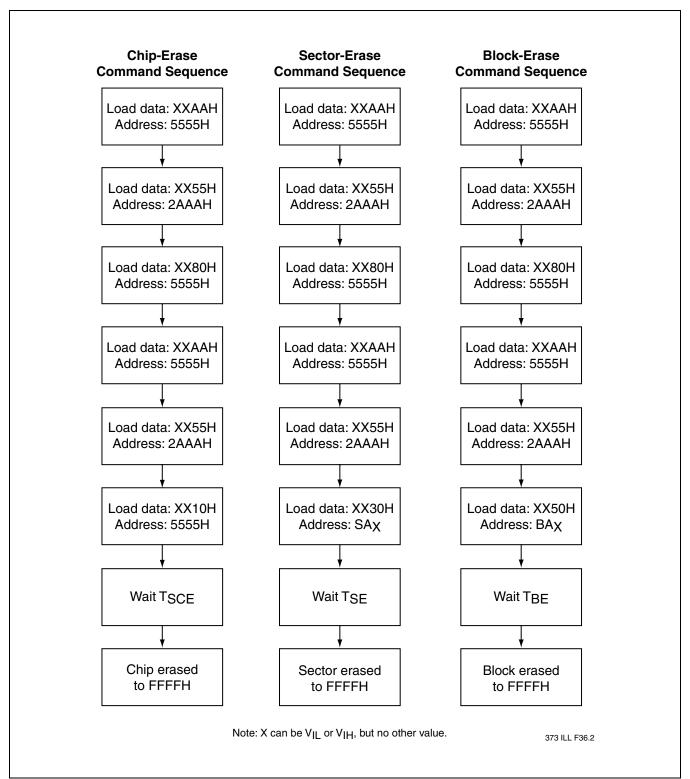
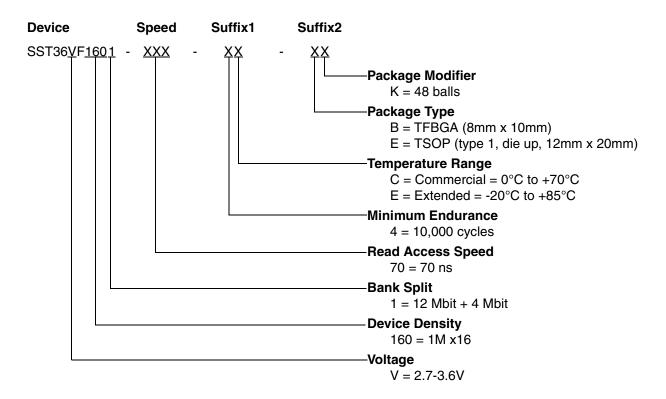
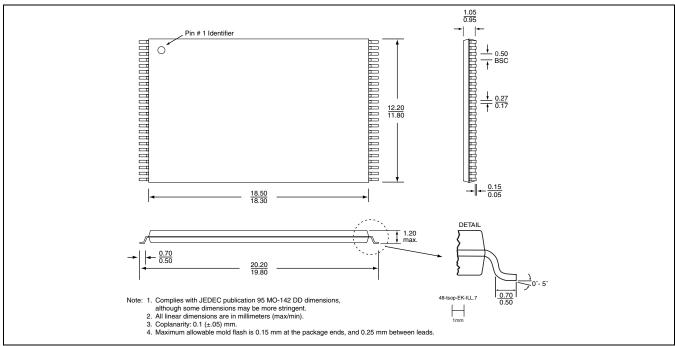



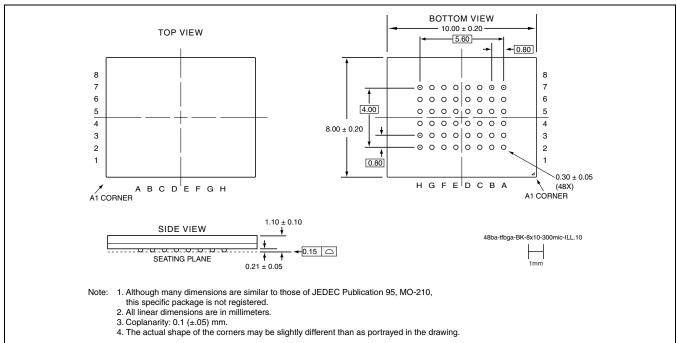
FIGURE 22: ERASE COMMAND SEQUENCE

Data Sheet

PRODUCT ORDERING INFORMATION


Valid combinations for SST36VF1601

SST36VF1601-70-4C-EK SST36VF1601-70-4C-BK SST36VF1601-70-4E-EK SST36VF1601-70-4E-BK


Note: Valid combinations are those products in mass production or will be in mass production. Consult your SST sales representative to confirm availability of valid combinations and to determine availability of new combinations.

PACKAGING DIAGRAMS

48-LEAD THIN SMALL OUTLINE PACKAGE (TSOP) 12MM X 20MM SST PACKAGE CODE: EK

48-BALL THIN-PROFILE, FINE-PITCH BALL GRID ARRAY (TFBGA) 8MM X 10MM SST PACKAGE CODE: BK

Silicon Storage Technology, Inc. • 1171 Sonora Court • Sunnyvale, CA 94086 • Telephone 408-735-9110 • Fax 408-735-9036 www.SuperFlash.com or www.ssti.com