Product Description

The Stanford Microdevices' SRM-1016 is a high linearity active mixer for use in a wide variety of communication systems covering the $800-1000 \mathrm{MHz}$ frequency bands. This device operates from a single 5 V supply and provides 10 dB of conversion gain while requiring only 0 dBm input to the integrated LO driver. The SRM-1016 also includes an integrated on chip IF amplifier and is fabricated using silicon germanium device technology.

The SRM-1016 incorporates internal matching on each RF, IF, and LO port to enhance ease of use and to reduce the number of external components required. The RF and LO ports can be driven differential or single ended. Each broadband port has been designed to minimize performance degradation while operating into highly reactive components such as SAW filters.

SRM-1016

800-1000 MHz High Linearity

 Silicon Germanium Active Receive Mixer

16 pin TSSOP with Exposed Pad
Package Body: $0.20 \times 0.17 \times 0.04$ (inches) $5.0 \times 4.4 \times 1.0(\mathrm{~mm})$

Product Features

- Active mixer with conversion gain
- No need for separate external LO driver
- Low LO drive level required to drive mixer
- RF and LO ports may be driven differentially
- Single supply operation (+5V)
- Broadband resistive 50Ω impedances on all three ports

Applications

- Digital and spread spectrum communication systems
- 800-1000 MHz transceivers for base station infrastructure equipment

Key Specifications

Parameters	Test Conditions (VCC=5.0V, I=150mA, T=25C)	Unit	Min.	Typ.	Max.
Frequency Range		MHz	800		1000
IF Frequency Range		MHz	10	200	300
Input IP3	RF1 = RF2 $=-17 \mathrm{dBm} / t o n e$	dBm		+20	
Input P1dB		dBm		+5	
Conversion Gain		dB		10	
SSB Noise Figure		dB		15	

[^0]The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or ommisions. notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems.
Copyright 2000 Stanford Microdevices, Inc. All worldwide rights reserved
522 Almanor Ave., Sunnyvale, CA 94086

Absolute Maximum Ratings

Parameters	Value	Unit
Supply Voltage	+6.0	$\mathrm{~V}_{\mathrm{DC}}$
LO Input	+10	dBm
RF Input	+15	dBm
Operating Temperature	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

Test Conditions

VCC	+5.0 V
TA	$+25 \div \mathrm{C}$
RF Input	$-20 \mathrm{dBm} @ 900 \mathrm{MHz}$
LO Input	$0.7 \mathrm{dBm} @ 700 \mathrm{MHz}$

Product Specifications - AC Performance

Parameters	Additional Test Conditions	Unit	Min.	Typ.	Max.
Frequency Range		MHz	800		1000
IF Frequency Range		$\mathrm{MF} 1=\mathrm{RF} 2=-17 \mathrm{dBm} /$ tone	MHz	10	200
Input IP3		dBm		+20	
Input P1dB		dBm		+5	
Conversion Gain		dB		10	
SSB Noise figure		dB		15	
RF Return Loss		dB		14	
LO Return Loss		dB		14	
IF Return Loss		dB		14	
LO Drive		dBm	-3	0	+3

Product Specifications - Isolation Performance

| Parameters | Additional Test Conditions | Unit | Min. | Typ. | Max. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Leakage (LO-RF) | | dBm | | -40 | |
| Leakage (LO-IF) | | dBm | | -26 | |

Product Specifications - Miscellaneous

| Parameters | Additional Test Conditions | Unit | Min. | Typ. | Max. |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Supply Voltage | | V | +4.75 | +5.0 | +5.25 |
| Supply Current | | mA | | 150 | |
| Thermal Resistance | | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ | | TBD | |

Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems.
Copyright 2000 Stanford Microdevices, Inc. All worldwide rights reserved.
522 Almanor Ave., Sunnyvale, CA 94086

Typical Device Performance

The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or ommisions.
Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems.
Copyright 2000 Stanford Microdevices, Inc. All worldwide rights reserved. 522 Almanor Ave., Sunnyvale, CA 94086

Pin Out Description

Pin \# Description		Additional Comments	
1	IFP	IF output, positive terminal	Nominal DC voltage is 1.6V. Output should be AC-coupled
2	VCC	Positive supply (+5 V)	
3	VEE	Ground	Nominal DC voltage is 2.1V. (Internally biased) Input should be AC- coupled.
4	RFP	RF input, positive terminal	Nominal DC voltage is 2.1V. (Internally biased) Input should be AC- coupled.
5	RFN	RF input, negative terminal	
6	VEE	Ground	Nominal DC voltage is 5V, provided through off chip inductors.
7	VCC	Positive supply (+5V)	Nominal DC voltage is 5V, provided through off chip inductors.
8	L1	External inductor terminal	Nominal DC voltage is 2.4V. (Internally biased) Input should be AC- coupled.
9	L2	External inductor terminal	Nominal DC voltage is 2.4V. (Internally biased) Input should be AC- coupled.
10	VCC	Positive supply (+5V)	
11	VEE	Ground	LO input, negative terminal
12	LON	LOP	LO input, positive terminal
14	VEE	Ground	Positive supply (+5V)
15	VCC	IFN	Nominal DC voltage is 1.6V. Output should be AC-coupled.
16	IF output, negative terminal		

Caution: ESD Sensitive

Appropriate precaution in handling, packaging and testing devices must be observed.

Part Number Ordering Information

Part Number	Reel Size	Devices/Reel
SRM-1016	TBD	TBD

Part Symbolization

The part will be symbolized with a "TBD" marking designator on the top surface of the package.

Package Dimensions ("16" Package)

NOTE

1. PACKAGE BODY SIZES EXCLUDE MOLD FLASH PROTRUSIONS OR GATE BURRS
. TOLERANCE $\pm 0.1 \mathrm{~mm}$ UNLESS OTHERWISE SPECIFIED
. COPLANARITY : 0.1 mm
2. CONTROLLING DIMENSION IS MILLIMETER. CONVERTED

INCH DIMENSIONS ARE NOT NECESSARILY EXACT
5. FOLLOWED FROM JEDEC MO-153

SYMBOLS	DIMENSIONS IN MILLIMETERS				DIMENIINS ININCHES		
	MIN	NOM	MAX	MIN	NOM	MAX	
A	-	--	1.15	--	---	0.045	
A1	0.00	-	-	0.10	0.000	--	0.004
A2	0.80	1.00	1.05	0.031	0.039	0.041	
b	0.19	-	0.30	0.007	--	0.012	
C	0.09	--	0.20	0.004	---	0.008	
D	4.90	5.00	5.10	0.193	0.197	0.201	
D1	-	2.80	-	--	0.110	--	
E	-	6.40	-	-	0.252	-	
E1	4.30	4.40	4.50	0.169	0.173	0.177	
E2	-	2.80	-	-	0.110	-	
e	-	0.65	-	-	0.026	-	
L	0.45	0.60	0.75	0.018	0.024	0.030	
y	-	-	0.10	-	-	0.004	
θ	0°	-	8	0°	--	8°	

Test PCB Pad Layout

Demo Test Board Schematic

Bill of Materials

Component Designator		Value	Vendor	Part Number	
A10		1	SMDI	SRM-1016	SiGe Receive Mixer
A7, A8, A12		3	Johnson Components	$142-0701-851$	SMA connector, end launch with tab, for 62 mil thick board
CON		1	Digikey	S1212-36-ND	2-pin header
A2	$1: 1$	1	Mini-Circuits	TC1-1	IF transformer
Lfil	1 uH	1	Digikey	PCD1008CT-ND	Inductor, 1210 footprint, min. 200mA rating
C1, C3, C20, C21	$27 p F$	4	Venkel	C0603COG500-270JNE	Capacitor, 0603 footprint
C6, C10	100 pF	2	Venkel	C0603COG500-101JNE	Capacitor, 0603 footprint
C7, C9	120 pF	2	Venkel	C0603COG500-121JNE	Capacitor, 0603 footprint
C4, C5	$33 p F$	2	Venkel	C0805COG500-330JNE	Capacitor, 0603 footprint
C11, C12	$39 p F$	2	Venkel	C0805COG500-390JNE	Capacitor, 0603 footprint
L1, L2	100 nH	2	TOKO	LL1608-FSR10J	Inductor, 0603 footprint, high Q series
R1, R2, R3, R4	0 ohm	4	Venkel	CR0603-16W-000T	Resistor, 0603 footprint

Stanford Micron provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or ommisions. notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems.
Copyright 2000 Stanford Microdevices, Inc. All worldwide rights reserved
Copyright 2000 Stanford Microdevices, Inc. All worldwide rights reserved. 522 Almanor Ave., Sunnyvale, CA 94086

Demo Test Board (Fully Assembled PCB)

Note: Dimensions in inches
Standard test board set up for IF $=200 \mathrm{MHz}$

[^0]: The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or ommisions.

