
STANFORD MICRONEVICES

Product Description

The Stanford Microdevices' STQ-3016 is a direct guadrature modulator targeted for use in a wide range of communications systems. This device features a wide 2500-4000 MHz operating frequency band, excellent carrier and sideband suppression, and a low broadband noise floor.

The STQ-3016 uses silicon germanium device technology and delivers a typical output power of -13dBm with 50dB IM3 suppression. A shutdown feature is included that, when enabled, attenuates the output by 60dB.

Functional Block Diagram

Advanced Data Sheet

STQ-3016 2500 - 4000 MHz **Direct Quadrature Modulator**

16 pin TSSOP with Exposed Pad Package Body: 0.20 x 0.17 x 0.04 (inches) 5.0 x 4.4 x 1.0 (mm)

Product Features

- 2500-4000 MHz operating frequency
- No external IF filter
- Very low noise floor performance
- Excellent carrier and sideband suppression
- Low LO drive requirements
- Shut-down feature
- Single 5 volt supply
- Supports wideband baseband input

Applications

- Digital communication system
- Spread spectrum communication systems
- GMSK, QPSK, QAM, SSB moduators
- Fixed wireless communication systems

Key Specifications

Parameters	Test Conditions (V _s =5.0V, I=82mA, T=25°C)	Unit	Min.	Тур.	Max.
Frequency Range		MHz	2500		4000
Output P1dB	f _{LO} = 3500 MHz	dBm		+1	
Carrier Feedthrough	f _{LO} = 3500 MHz, unoptimized	dBm		-40	
Sideband Suppression	f _{LO} = 3500 MHz	dB		33	
Broadband Noise Floor	f_{LO} = 3500 MHz, baseband inputs tied to 1.9V_{DC}, -20 MHz offset from carrier	dBm/Hz		-153	
LO Drive Level		dBm	-9	-6	-3
See page 2 for general test of	conditions	•	•	•	

The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or ommisions.

Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems. Copyright 2000 Stanford Microdevices, Inc. All worldwide rights reserved.

522 Almanor Ave., Sunnyvale, CA 94086

Phone: (800) SMI-MMIC

http://www.stanfordmicro.com 05/07/01 rev 2.0

Absolute Maximum Patings

Advanced Data Sheet

STQ-3016 Direct Quadrature Modulator

Absolute Maximum Ratings				
Parameters	Unit	Test Co	onditions	
Supply Voltage	6.0	V _{DC}	VS	+5V
LO, RF Input	+10	dBm	TA	+25°C
Min Input Voltage (BBIP, BBIN, BBQP, BBQN)	0	V _{DC}		1.9V DC bias, 200kHz fre-
Max Input Voltage (BBIP, BBIN, BBQP, BBQN)	3	V _{DC}	Basebar Inputs	nd quency, 300mVp-p per pin = 600mVp-p differential drive, I
Operating Temperature	-40 to +85	°C		and Q signals in quadrature
Storage Temperature	-65 to +150	°C	LO Inpu	t -5dBm @ 3500 MHz

Product Specifications – RF Output

Parameters	Additional Test Conditions	Unit	Min.	Тур.	Max.
Frequency Range		MHz	2500		4000
Output Power		dBm		-13	
RF Port Return Loss	3.2 to 3.8 GHz, matched to 50 ohm ref. on evaluation board	dB	14		
Output P1dB		dBm		+1	
Carrier Feedthrough	unoptimized	dBm		-40	
Sideband Suppression		dB		33	
IM3 Suppression	two-tone baseband input @ 600mVp-p differential per tone	dB		50	
Broadband Noise Floor	baseband inputs tied to 1.9V _{DC} , -20 MHz offset from carrier	dBm/Hz		-153	
Quadrature Phase Error		deg	-3		+3
I/Q Amplitude Balance		dB	-0.2		+0.2

Product Specifications - Modulation Input

Parameters	Additional Test Conditions	Unit	Min.	Тур.	Max.
Baseband Frequency Input	-3dB bandwidth, baseband inputs terminated in 50 ohms	MHz	DC		1000
Baseband Input Resistance	per pin	kohms		4.4	
Baseband Input Capacitance	per pin	pF		0.5	

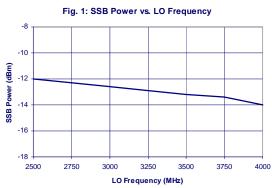
Product Specifications - LO Input

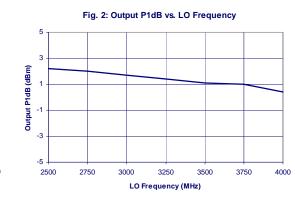
Parameters	Additional Test Conditions	Unit	Min.	Тур.	Max.
Usable LO Frequency		MHz	2500		4000
LO Drive Level		dBm	-9	-6	-3
LO Port Return Loss	3.2 to 3.8 GHz, matched to 50 ohm ref. on evaluation board	dB	14		

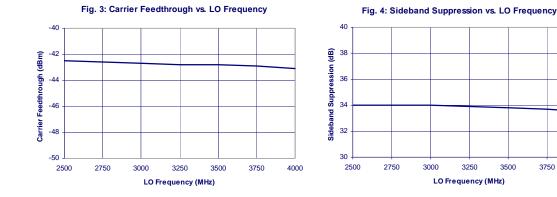
Product Specifications – Miscellaneous

Parameters	Additional Test Conditions	Unit	Min.	Тур.	Max.
Shut-Down Attenuation		dB		60	
Shut-Down Pin Resistance	@ 1MHz	kohm		6.1	
Shut-Down Pin Capacitance	@ 1MHz	pF		0.7	
Shut-Down Input Thresholds		—		CMOS	
Shut-Down Settling Time		ns		<500	
Supply Voltage		V	+4.75	+5	+5.25
Supply Current		mA		82	
Device Thermal Resistance	junction-case	°C/W		TBD	

I'
The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or ommisions.
Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without
notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices
copyright 2000 Stanford Microdevices, Inc. All worldwide rights reserved.
522 Almanor Ave., Sunnyvale, CA 94086
Phone: (800) SMI-MMIC
http://www.stanfordmicro.com


Phone: (800) SMI-MMIC


05/07/01 rev 2.0



Advanced Data Sheet **STQ-3016 Direct Quadrature Modulator**

Typical Device Performance

The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or ommisions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems. Copyright 2000 Stanford Microdevices, Inc. All worldwide rights reserved. 522 Almanor Ave., Sunnyvale, CA 94086

Phone: (800) SMI-MMIC

http://www.stanfordmicro.com 05/07/01 rev 2.0

4000

Advanced Data Sheet **STQ-3016 Direct Quadrature Modulator**

RF Port					LO Port				
Frequency	Iency Single-Ended Differential Frequency		Single-Ended			Single	-Ended	Diffe	rential
(MHz)	Mag.	Ang.	Mag.	Ang.	(MHz)	Mag.	Ang.	Mag.	Ang.
2500	0.364	124.9	0.320	55.75	2500	0.303	68.71	0.695	-109.9
2600	0.367	123.1	0.330	54.86	2600	0.315	67.80	0.681	-114.4
2700	0.370	121.3	0.339	53.98	2700	0.327	66.89	0.667	-118.9
2800	0.373	119.6	0.349	53.12	2800	0.339	65.97	0.654	-123.4
2900	0.376	117.8	0.358	52.29	2900	0.351	65.05	0.641	-127.9
3000	0.379	116.1	0.366	51.48	3000	0.363	64.12	0.629	-132.5
3100	0.383	114.4	0.375	50.69	3100	0.375	63.19	0.618	-137.0
3200	0.386	112.8	0.384	49.92	3200	0.387	62.26	0.607	-141.6
3300	0.390	111.1	0.392	49.17	3300	0.399	61.32	0.597	-146.2
3400	0.393	109.5	0.400	48.44	3400	0.411	60.37	0.588	-150.8
3500	0.397	107.9	0.408	47.73	3500	0.423	59.43	0.580	-155.3
3600	0.401	106.4	0.416	47.04	3600	0.434	58.48	0.573	-159.9
3700	0.405	104.8	0.424	46.36	3700	0.446	57.53	0.566	-164.5
3800	0.409	103.3	0.432	45.7	3800	0.458	56.57	0.561	-169.0
3900	0.414	101.8	0.440	45.06	3900	0.469	55.61	0.556	-173.5
4000	0.418	100.3	0.447	44.43	4000	0.480	54.65	0.552	-178.0

Small Signal S-Parameters

Notes:

1. VCC = +5.0V, T = +25°C.

2. For single-ended S-parameters, the corresponding differential pin is left floating.

3. Data is referenced to the foot of the package lead and does not include the applications circuit.

4. All data simulated.

The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or ommisions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems. Copyright 2000 Stanford Microdevices, Inc. All worldwide rights reserved. 522 Almanor Ave., Sunnyvale, CA 94086 Phone: (800) SMI-MMIC http://www.stanfordmicro.com

Phone: (800) SMI-MMIC

Advanced Data Sheet

STQ-3016 Direct Quadrature Modulator

Pin Out	Description	1	
Pin #	Function	Description	Additional Comments
1	BBQP	Q-channel baseband input, positive terminal	Nominal DC bias voltage is 1.9V (biased internally)
2	VCC	Positive supply (+5V)	
3	VEE	Ground	
4	LOP	Local oscillator input, positive terminal	Nominal DC voltage is 2.0V. Input should be AC-coupled.
5	LON	Local oscillator input, negative terminal	Nominal DC voltage is 2.0V. Input should be AC-coupled.
6	VEE	Ground	
7	SD	Shut-down control	CMOS logic levels. Logic high = normal operation; logic low = shut-down enabled.
8	BBIP	I-channel baseband input, positive terminal	Nominal DC bias voltage is 1.9V (biased internally)
9	BBIN	I-channel baseband input, negative terminal	Nominal DC bias voltage is 1.9V (biased internally)
10	VCC	Positive supply (+5V)	
11	VEE	Ground	
12	RFN	RF output, negative terminal	Nominal DC voltage is 2.4V. Output should be AC-coupled.
13	RFP	RF output, positive terminal	Nominal DC voltage is 2.4V. Output should be AC-coupled.
14	VEE	Ground	
15	VCC	Positive supply (+5V)	
16	BBQN	Q-channel baseband input, negative terminal	Nominal DC bias voltage is 1.9V (biased internally)

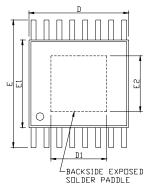
The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or ommisions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices Copyright 2000 Stanford Microdevices, Inc. All worldwide rights reserved. 522 Almanor Ave., Sunnyvale, CA 94086 Phone: (800) SMI-MMIC http://www.stanfordmicro.com

Phone: (800) SMI-MMIC 5

http://www.stanfordmicro.com 05/07/01 rev 2.0

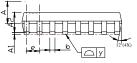
Advanced Data Sheet

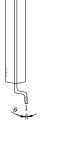
STQ-3016 Direct Quadrature Modulator


Part Number Ordering Information

Part Number	Reel Size	Devices/Reel		
STQ-3016	TBD	TBD		

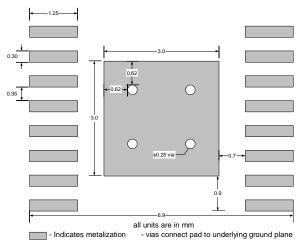
Part Symbolization


The part will be symbolized with a "TBD" marking designator on the top surface of the package.


Package Dimensions

Caution: ESD Sensitive

Appropriate precaution in handling, packaging and testing devices must be observed.



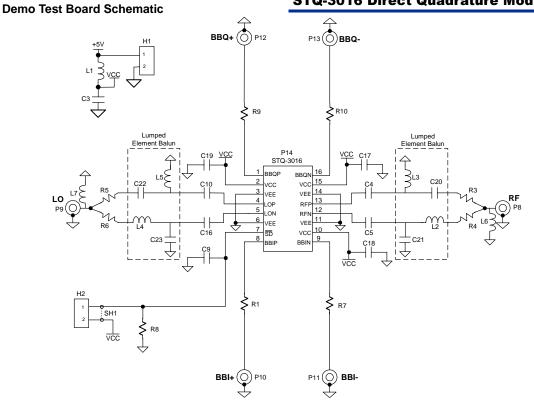
- NOTE

- NOTE 1. PACKAGE BODY SIZES EXCLUDE MOLD FLASH PROTRUSIONS OR GATE BURRS 2. TOLERANCE ±0.1 mm UNLESS OTHERWISE SPECIFIED 3. COPLANARITY : 0.1 mm 4. CONTROLLING DIMENSION IS MILLIMETER. CONVERTED INCH DIMENSIONS ARE NOT NECESSARILY EXACT. 5. FOLLOWED FROM JEDEC MO-153

SYMBOLS	DIMENS	IONS IN MILLI	METERS	DIMENSIONS IN INCHES			
STMBULS	MIN	NOM	MAX	MIN	NOM	MAX	
Α			1.15			0.045	
A1	0.00		0.10	0.000		0.004	
A2	0.80	1.00	1.05	0.031	0.039	0.041	
b	0.19		0.30	0.007		0.012	
С	0.09		0.20	0.004		0.008	
D	4.90	5.00	5.10	0.193	0.197	0.201	
D1		2.80			0.110		
E		6.40			0.252		
E1	4.30	4.40	4.50	0.169	0.173	0.177	
E2		2.80			0.110		
e		0.65			0.026		
L	0.45	0.60	0.75	0.018	0.024	0.030	
у			0.10			0.004	
θ	0°		8°	0°		8°	

Test PCB Pad Layout

The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or ommisions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems. Copyright 2000 Stanford Microdevices, Inc. All worldwide rights reserved.


522 Almanor Ave., Sunnyvale, CA 94086

Phone: (800) SMI-MMIC 6

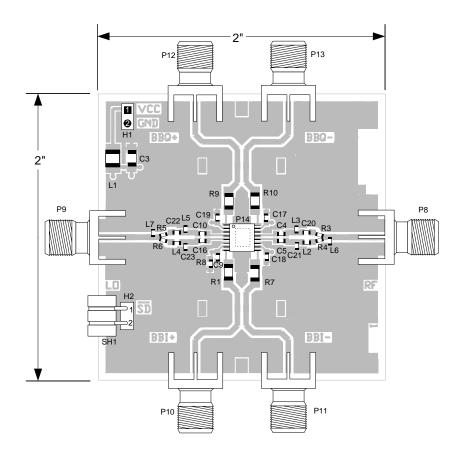
http://www.stanfordmicro.com 05/07/01 rev 2.0

Advanced Data Sheet **STQ-3016 Direct Quadrature Modulator**

Bill of Materials (for evaluation at 3.5GHz)

Component Designator	Value	Qty	Vendor	Part Number	Description
P14		1	SMDI	STQ-3016	STQ-3016 SiGe Direct Quadrature Modulator
P8, P9, P10, P11, P12, P13		6	Johnson Components	142-0701-851	SMA connector, end launch with tab, for .062" thick board
H1, H2		2	AMP	640453-2	2-pin header, right angle
L1	1uH	1	Panasonic	ELJ-FA1R0KF2	Inductor, 1210 footprint, ±10% tolerance
R1, R7, R9, R10	200 ohm	4	Venkel	CR1206-8W-2000FT	Resistor, 1206 footprint, ± 1% tolerance
R8	10 kohm	1	Venkel	CR0603-16W-1002FT	Resistor, 0603 footprint, ±1% tolerance
C9, C17	1nF	2	Venkel	C0603COG500-102JNE	Capacitor, 0603 footprint, COG dielectric, ±5% tolerance
C3	2.2uF	1	Venkel	C1206Y5V160-225ZNE	Capacitor, 1206 footprint, Y5V dielectric, 16V rating
C4, C5, C10, C16, C18, C19	1.0pF	6	Venkel	C0603COG500-100JNE	Capacitor, 0603 footprint, COG dielectric, ±5% tolerance
SH1		1	3M	929950-00	Shunt for 2-pin header
L2, L3, L4, L5, L6, L7	2.2nH	6	токо	LL1608FS-F2N2S	Inductor, 0603 footprint, ±0.3nH tolerance
C20, C21, C22, C23	0.5pF	4	Venkel	C0603COG500-0R5CNE	Capacitor, 0603 footprint, COG dielectric, ±0.25pF toler- ance
R3, R4, R5, R6	0 ohm	4	Venkel	CR0603-16W-000T	Resistor, 0603 footprint

The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or ommisions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems. Copyright 2000 Stanford Microdevices, Inc. All worldwide rights reserved. 522 Almanor Ave., Sunnyvale, CA 94086 Phone: (800) SMI-MMIC http://www.stanfordmicro.com


Phone: (800) SMI-MMIC

05/07/01 rev 2.0

Advanced Data Sheet **STQ-3016 Direct Quadrature Modulator**

Demo Test Board (Fully Assembled PCB)

The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or ommisions. Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems. Copyright 2000 Stanford Microdevices, Inc. All worldwide rights reserved. 522 Almanor Ave., Sunnyvale, CA 94086 Phone: (800) SMI-MMIC http://www.stanfordmicro.com

Phone: (800) SMI-MMIC

05/07/01 rev 2.0