Product Description

Stanford Microdevices' SGA-1263 is a Silicon Germanium HBT Heterostructure Bipolar Transistor (SiGe HBT) amplifier that offers excellent isolation and flat gain response for applications to 4 GHz .

This RFIC is a 2 -stage design that provides high isolation of up to 40 dB at 2 GHz and is fabricated using the latest SiGe HBT $50 \mathrm{GHz} \mathrm{F}_{\mathrm{T}}$ process, featuring 1 micron emitters with Vceo > 7V.

These unconditionally stable amplifiers have less than 1dB gain drift over $125^{\circ} \mathrm{C}$ operating range (-40 C to +85 C) and are ideal for use as buffer amplifiers in oscillator applications covering cellular, ISM and narrowband PCS bands.

SGA-1263

DC-4000 MHz Silicon Germanium HBT Cascadeable Gain Block

Product Features

- DC-4000 MHz Operation
- Single Supply Voltage
- Excellent Isolation, >50 dB at 900 MHz
- 50 Ohms In/Out, Broadband Match for Operation from DC-4 GHz
- Unconditionally Stable

Applications

- Buffer Amplifier for Oscillator Applications
- Broadband Gain Blocks
- IF Amp

Symbol	Parameters: Test Conditions: $\mathrm{Z}_{0}=50$ Ohms, $\mathrm{Id}=8 \mathrm{~mA}, \mathrm{~T}=25^{\circ} \mathrm{C}$		Units	Min.	Typ.	Max.
$\mathrm{P}_{1 \mathrm{~dB}}$	Output Power at 1dB Compression	$\begin{aligned} & \mathrm{f}=850 \mathrm{MHz} \\ & \mathrm{f}=1950 \mathrm{MHz} \end{aligned}$	dBm dBm		$\begin{aligned} & -7.8 \\ & -7.4 \end{aligned}$	
S_{21}	Small Signal Gain	$\begin{aligned} & f=D C-1000 \mathrm{MHz} \\ & \mathrm{f}=1000-2000 \mathrm{MHz} \\ & \mathrm{f}=2000-4000 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$	14.3	$\begin{aligned} & 15.9 \\ & 15.2 \\ & 12.3 \end{aligned}$	
S_{12}	Reverse Isolation	$\begin{aligned} & \mathrm{f}=\mathrm{DC}-1000 \mathrm{MHz} \\ & \mathrm{f}=1000-2000 \mathrm{MHz} \\ & \mathrm{f}=2000-4000 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$		$\begin{aligned} & 56.3 \\ & 40.6 \\ & 30.8 \end{aligned}$	
S_{11}	Input VSWR	$\begin{aligned} & \mathrm{f}=\mathrm{DC}-2400 \mathrm{MHz} \\ & \mathrm{f}=2400-4000 \mathrm{MHz} \end{aligned}$	-		$\begin{aligned} & 1.8: 1 \\ & 1.3: 1 \end{aligned}$	
S_{22}	Output VSWR	$\begin{aligned} & f=D C-2400 \mathrm{MHz} \\ & \mathrm{f}=2400-4000 \mathrm{MHz} \end{aligned}$	-		$\begin{aligned} & 1.8: 1 \\ & 1.9: 1 \end{aligned}$	
\mathbb{P}_{3}	Third Order Intercept Point Power out per Tone $=-20 \mathrm{dBm}$	$\begin{aligned} & \mathrm{f}=850 \mathrm{MHz} \\ & \mathrm{f}=1950 \mathrm{MHz} \end{aligned}$	dBm dBm		$\begin{aligned} & 2.6 \\ & 2.8 \end{aligned}$	
NF	Noise Figure	$\begin{aligned} & \mathrm{f}=\mathrm{DC}-1000 \mathrm{MHz} \\ & \mathrm{f}=1000-2400 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$		$\begin{aligned} & 2.7 \\ & 2.9 \end{aligned}$	
T_{D}	Group Delay	$\mathrm{f}=1000 \mathrm{MHz}$	pS		82	
V_{D}	Device Voltage		V	2.5	2.8	3.1

[^0]SGA-1263 DC-4000 MHz 2.8V SiGe Amplifier

| Parameter | Specification | | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Typ. | Max. | Unit | Cost |
| Condition | | | |

Pin \#	Function	Description	Device Schematic
1	GND	Connection to ground. Use via holes for best performance to reduce lead inductance as close to ground leads as possible.	$\stackrel{\text { RF IN }}{\rightleftharpoons}$
2	GND	Sames as Pin 1	
3	RF IN	RF input pin. This pin requires the use of an external DC blocking capacitor chosen for the frequency of operation.	
4	Vcc	Supply Connection. This pin should be bypassed with a suitable capacitor(s).	
5	GND	Sames as Pin 1	
6	RF OUT	RF output and bias pin. DC voltage is present on this pin, therefore a DC blocking capacitor is necessary for proper operation.	

Application Schematic for +5 V Operation at 900 MHz

Note: A bias resistor is needed for stability over temperature

Application Schematic for +5V Operation at 1900 MHz

S11, $\mathrm{Id}=10 \mathrm{~mA}, \mathrm{~T}=+25 \mathrm{C}$

Frequency MHz

S12, $\mathrm{Id}=10 \mathrm{~mA}, \mathrm{~T}=+25 \mathrm{C}$

Frequency MHz

S22, $I d=10 \mathrm{~mA}, T=+25 \mathrm{C}$

Frequency MHz

S11, Id=10mA, Ta= +25C

S22, $I d=10 m A, T a=+25 C$

The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or omissions.
Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems.
Copyright 1999 Stanford Microdevices, Inc. All worldwide rights reserved.

Frequency MHz

S11, Id =10mA, T=-40C

Frequency MHz

Frequency MHz
$S 22, I d=10 m A, T=-40 C$

S22, $\mathrm{Id}=10 \mathrm{~mA}, \mathrm{~T}=-40 \mathrm{C}$

The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or omissions.
Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems.
Copyright 1999 Stanford Microdevices, Inc. All worldwide rights reserved

The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or omissions.
Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems.
Copyright 1999 Stanford Microdevices, Inc. All worldwide rights reserved.

Absolute Maximum Ratings

Parameter	Value	Unit
Supply Current	20	mA
Operating Temperature	-40 to +85	C
Maximum Input Power	-12	dBm
Storage Temperature Range	-40 to +85	C
Operating Junction Temperature	+125	C

Caution:

Operation of this device above any one of these parameters may cause permanent damage. Appropriate precautions in handling, packaging and testing devices must be observed.

Part Number Ordering Information

Part Number	Reel Size	Devices/Reel
SGA-1263-TR1	$7{ }^{\prime \prime}$	3000

Recommended Bias Resistor Values					
Supply Voltage(Vs)	$\mathbf{3 . 6 V}$	$\mathbf{5 V}$	$\mathbf{7 . 5 V}$	$\mathbf{9 V}$	$\mathbf{1 2 V}$
Rbias (Ohms)	100	275	588	775	1150

Thermal Resistance (Lead-Junction):
$255^{\circ} \mathrm{C} / \mathrm{W}$

Package Dimensions

0.10 (0.004)

The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or omissions.
Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems.
Copyright 1999 Stanford Microdevices, Inc. All worldwide rights reserved.

[^0]: The information provided herein is believed to be reliable at press time. Stanford Microdevices assumes no responsibility for inaccuracies or omissions.
 Stanford Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Stanford Microdevices does not authorize or warrant any Stanford Microdevices product for use in life-support devices and/or systems.

