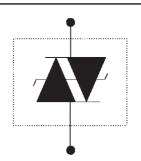


TRISIL™

FEATURES

- BIDIRECTIONAL CROWBAR PROTECTION.
- VOLTAGE RANGE: FROM 62 V TO 270 V.
- HOLDING CURRENT: $I_{H} = 150 \text{mA min.}$
- REPETITIVE PEAK PULSE CURRENT : IPP = 50 A, 10/1000 µs.



DESCRIPTION

The TPA series are TRISIL devices especially designed for protecting sensitive telecommunication equipment against lightning and transient voltages induced by AC power lines. They are available in the F126 axial package.

TRISIL devices provide bidirectional protection by crowbar action. Their characteristic response to transient overvoltages makes them particularly suited to protect voltage sensitive telecommunication equipment.

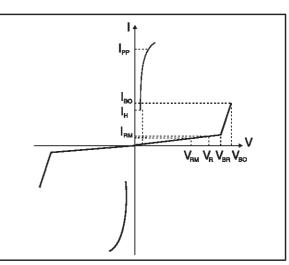
SCHEMATIC DIAGRAM

COMPLIES WITH THE FOLLOWING STANDARDS:	Peak Surge Voltage (V)	Voltage Waveform (μs)	Current Waveform (μs)	Admissible Ipp (A)	Necessary Resistor (Ω)
(CCITT) ITU-K20	1000	10/700	5/310	25	-
(CCITT) ITU-K17	1500	10/700	5/310	38	-
VDE0433	2000	10/700	5/310	50	-
VDE0878	2000	1.2/50	1/20	50	-
IEC-1000-4-5	level 3 level 4	10/700 1.2/50	5/310 8/20	50 100	-
FCC Part 68, lightning surge type A	1500 800	10/160 10/560	10/160 10/560	75 55	12.5 6.5
FCC Part 68, lightning surge type B	1000	9/720	5/320	25	-
BELLCORE TR-NWT-001089 First level	2500 1000	2/10 10/1000	2/10 10/1000	150 50	11.5 10
BELLCORE TR-NWT-001089 Second level	5000	2/10	2/10	150	11.5
CNET 131-24	1000	0.5/700	0.8/310	25	-

October 1998 - Ed: 9A

ABSOLUTE MAXIMUM RATINGS (T_{amb} = 25°C)

Symbol	Parameter	Value	Unit	
Р	Power dissipation on infinite heatsink	1.7	W	
I _{PP}	Peak pulse current	10/1000 μs 8/20 μs	50 100	A
I _{TSM}	Non repetitive surge peak on-state current	tp = 20 ms	30	А
l ² t	l ² t value for fusing	tp = 20 ms	9	A ² s
dV/dt	Critical rate of rise of off-state voltage	V _{RM}	5	kV/μs
T _{stg} Tj	Storage temperature range Maximum junction temperature		- 55 to + 150 150	° ℃ ℃
ΤL	Maximum lead temperature for soldering during 10s at	230	°C	

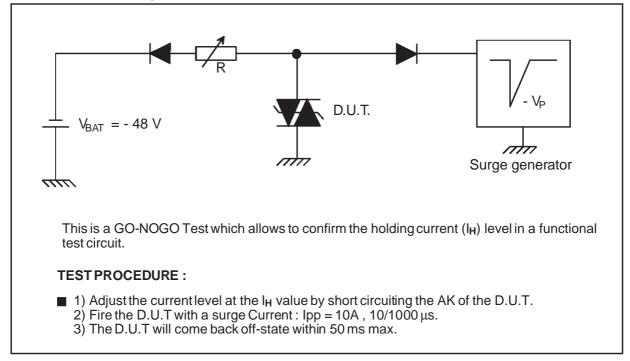

THERMAL RESISTANCES

Symbol	Parameter	Value	Unit
R _{th} (j-l)	Junction to leads (Llead = 10mm)	60	°C/W
R _{th} (j-a)	Junction to ambient on printed circuit ($L_{lead} = 10 \text{ mm}$)	100	°C/W

ELECTRICAL CHARACTERISTICS

 $(T_{amb} = 25^{\circ}C)$

Symbol	Parameter					
V _{RM}	Stand-off voltage					
I _{RM}	Leakage current at stand-off voltage					
VR	Continuous Reverse voltage					
V_{BR}	Breakdown voltage					
V _{BO}	Breakovervoltage					
lΗ	Holding current					
lво	Breakover current					
IPP	Peak pulse current					
С	Capacitance					



Туре	I _{RM} @ V _{RM}		I _R @ V _R		V во @ Іво		Ін	С
	max.		max. note 1		max. note 2		min. note 3	max. note 4
	μΑ	V	μ Α	V	v	mA	mA	рF
TPA62	2	56	50	62	82	800	150	150
TPA68	2	61	50	68	90	800	150	150
TPA100	2	90	50	100	133	800	150	100
TPA120	2	108	50	120	160	800	150	100
TPA130	2	117	50	130	173	800	150	100
TPA180	2	162	50	180	240	800	150	100
TPA200	2	180	50	200	267	800	150	100
TPA220	2	198	50	220	293	800	150	100
TPA240	2	216	50	240	320	800	150	100
TPA270	2	243	50	270	360	800	150	100

Note 1: IR measured at V_R guarantee $V_{BRmin} \ge V_R$ Note 3: See test circuit 2. 57

TEST CIRCUIT 1 FOR IBO and VBO parameters: tp = 20msAuto የ **R1** Transformer static 140 0 220V/2A relay. **R2** 240 0 mmmmm 220V Vout ۷во D.U.T I_{BO} measure measure Transformer 220V/800V 5A **TEST PROCEDURE :** Pulse Test duration (tp = 20ms): - For Bidirectional devices = Switch K is closed - For Unidirectional devices = Switch K is open. ■ Vout Selection - Device with V_{BO} < 200 Volt - V_{\text{OUT}} = 250 V_RMs, R_1 = 140 $\Omega.$ - Device with $V_{BO} \ge 200$ Volt - $V_{OUT} = 480 V_{RMS}$, $R_2 = 240 \Omega$.

TEST CIRCUIT 2 for I_H parameter.

57

Fig. 1: Non repetitive surge peak on-state current versus overload duration (Tj initial=25°C).

|_{ТSM} (А) 40 П F=50Hz 35 30 ттп ПΠ 25 20 ТП 15 10 5 t(s) ╢╢ 0 └─ 1E-2 1E-1 1E+0 1E+1 1E+2 1E+3

Fig. 3: Relative variation of junction capacitance versus reverse applied voltage (typical values). **Note:** For V_{RM} upper than 56V, the curve is extrapolated (dotted line).

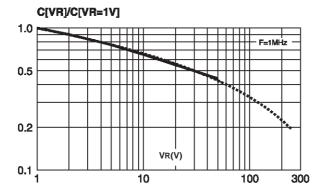


Fig. 5: Transient thermal impedance junction to ambient versus pulse duration (for FR4 PC Board with $T_{lead} = 10 \text{ mm}$).

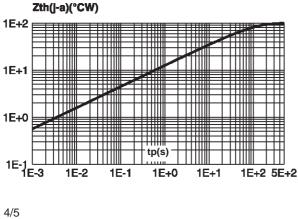


Fig. 2: Relative variation of holding current versus junction temperature.

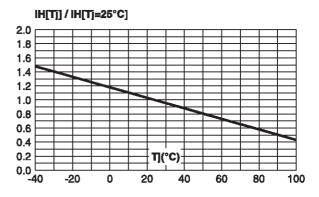
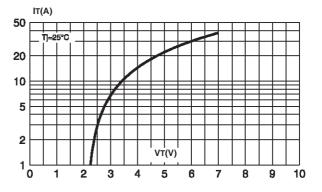
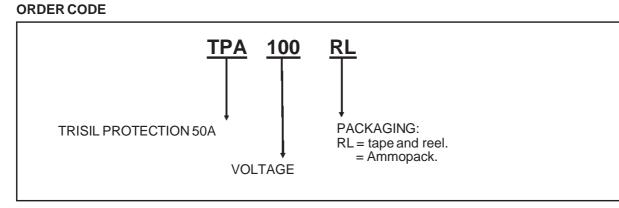
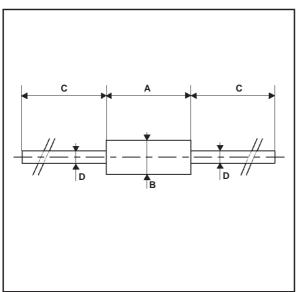




Fig. 4: On-state current versus on-state voltage (typical values).



MARKING: Logo, Date Code, Part Number.

PACKAGE MECHANICAL DATA

F126 Plastic

	DIMENSIONS								
REF.	Millimeters			Inches					
	Min.	Тур.	Max.	Min.	Тур.	Max.			
A	6.05	6.20	6.35	0.238	0.244	0.250			
В	2.95	3.00	3.05	0.116	0.118	0.120			
С	26		31	1.024		1.220			
D	0.76	0.81	0.86	0.030	0.032	0.034			

Weight: 0.40 g

Packaging: Standard packaging is in tape and reel.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 1998 STMicroelectronics - Printed in Italy - All rights reserved.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco -The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

http://www.st.com

