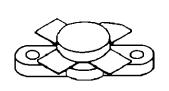


SD1274-01

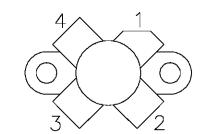

RF & MICROWAVE TRANSISTORS VHF MOBILE APPLICATIONS

- 160 MHz
- 13.6 VOLTS

DESCRIPTION

mismatch conditions.

- COMMON EMITTER
- Pout = 30 W MIN. WITH 10 dB GAIN


.380 4LFL (M113)

 $\mbox{epoxy sealed} \\ \mbox{ORDER CODE} \\$

SD1274-01

BRANDING SD1274-1

PIN CONNECTION

- 1. Collector
- 3. Base
- 2. Emitter
- 4. Emitter

ABSOLUTE MAXIMUM RATINGS (T_{case} = 25°C)

The SD1274-01 is a 13.6 V Class C epitaxial silicon NPN planar transistor designed primarily for VHF communications. The SD1274-01 utilizes an emit-

ter ballasted die geometry to withstand severe load

Symbol Parameter		Value	Unit	
V _{CBO}	Collector-Base Voltage	36	V	
V _{CEO}	Collector-Emitter Voltage	16	V	
V _{CES} Collector-Emitter Voltage		36	V	
V _{EBO}	Emitter-Base Voltage	4.0	V	
Ic	Device Current	8.0	А	
P _{DISS} Power Dissipation		70	W	
TJ	Junction Temperature	+200	°C	
T _{STG}	Storage Temperature	- 65 to +150	°C	

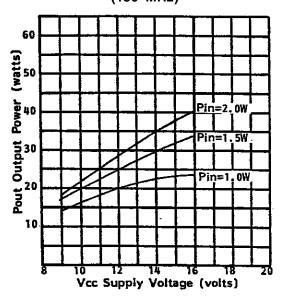
THERMAL DATA

R _{TH(j-c)} Junction-Case Thermal Resistance	1.2	°C/W
---	-----	------

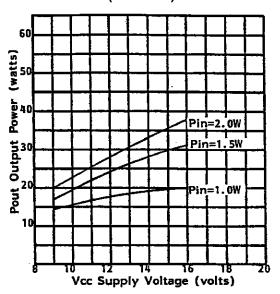
June 1993 1/4

ELECTRICAL SPECIFICATIONS (Tcase = 25°C)

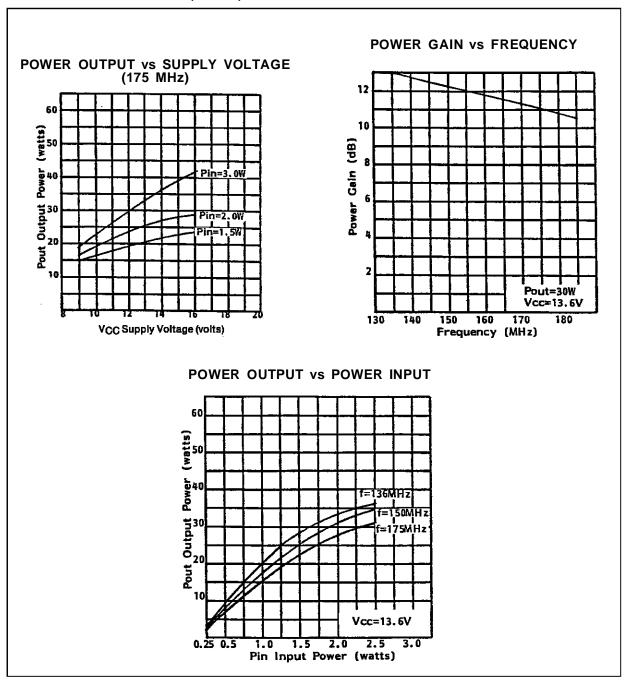
STATIC


Symbol	Test Conditions	Value			Unit		
Symbol	rest Conditions		Min.	Тур.	Max.		
BVces	I _C = 15mA	$V_{BE} = 0mA$		36	_	_	V
BVCEO	I _C = 50mA	$I_B = 0mA$		16	_	_	V
BV _{EBO}	I _E = 5mA	$I_C = 0mA$		4.0	_		V
I _{CBO}	V _{CB} = 15V	$I_E = 0mA$		_	_	5	mA
hFE	V _{CE} = 5V	I _C = 250mA		20	_	_	_

DYNAMIC

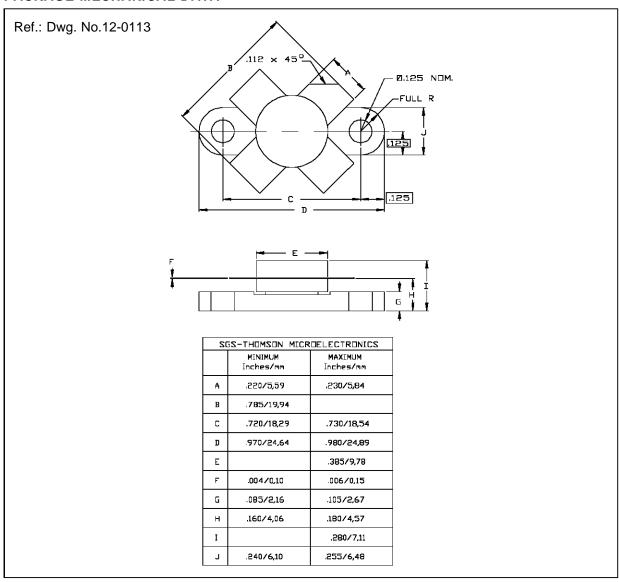

Symbol	I Test Conditions		Value			Unit	
Symbol		rest Conditions		Min.	Тур.	Max.	Oiiit
Pout	f = 160 MHz	$P_{IN} = 3.0 W$	$V_{CE} = 13.6 \text{ V}$	30	_	_	W
G _P	f = 160 MHz	$P_{IN} = 3.0 W$	$V_{CE} = 13.6 \text{ V}$	10	_	_	dB
Сов	f = 1 MHz	V _{CB} = 15 V		_	95	_	pF

TYPICAL PERFORMANCE


POWER OUTPUT vs SUPPLY VOLTAGE (136 MHz)

POWER OUTPUT vs SUPPLY VOLTAGE (150 MHz)

TYPICAL PERFORMANCE (cont'd)


IMPEDANCE DATA

FREQ.	Z _{IN} (Ω)	Z _{CL} (Ω)
175 MHz	1.0 + j 0.4	2.3 + j 0.1

 $P_{IN} = 3.0 \text{ W}$ $V_{CE} = 12.5 \text{ V}$

PACKAGE MECHANICAL DATA

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use ascritical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.

© 1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

