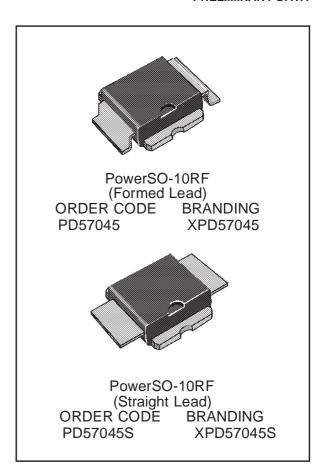


PD57045 **PD57045S RF POWER TRANSISTORS** The LdmoST Plastic FAMILY

PRELIMINARY DATA


N-CHANNEL ENHANCEMENT-MODE LATERAL **MOSFETs**

- EXCELLENT THERMAL STABILITY
- COMMON SOURCE CONFIGURATION
- POUT = 45 W with 13 dB gain @ 945 MHz / 28V
- NEW RF PLASTIC PACKAGE

DESCRIPTION

The PD57045 is a common source N-Channel, enhancement-mode, lateral Field-Effect RF power transistor. It is designed for high gain, broad band commercial and industrial applications. It operates at 28V in common source mode at frequencies of up to 1GHz. PD57045 boasts the excellent gain, linearity and reliability of ST's latest LDMOS technology mounted in the first true SMD plastic RF power package, PowerSO-10RF. PD57045's superior linearity performance makes it an ideal solution for base station applications.

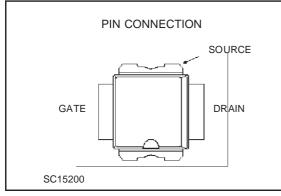
The PowerSO-10 plastic package, designed to offer high reliability, is the first ST JEDEC approved, high power SMD package. It has been specially optimized for RF needs and offers excellent RF performances and ease of assembly.

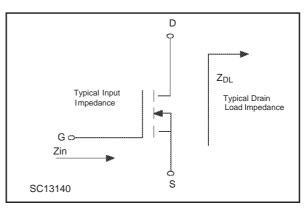
ABSOLUTE MAXIMUM RATINGS(T _{CASE} =	25 °C)
--	--------

Symbol	Parameter	Value	Unit
V _{(BR)DSS}	Drain-Source Voltage	65	V
V _{GS}	Gate-Source Voltage	±20	V
ID	Drain Current	5	А
PDISS	Power Dissipation (@ Tc = 70° C)	73	W
Tj	Max. Operating Junction Temperature	165	0C
T _{STG}	Storage Temperature	-65 to 165	0 ⁰ C

THERMAL DATA ($T_{CASE} = 70 \, {}^{0}C$)

R _{th(j-c)}	Junction-Case Thermal Resistance	1.3	⁰ C/W
May 2000			1/8

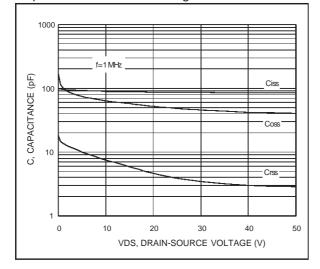

ELECTRICAL SPECIFICATION(T_{CASE} = 25 °C)


STATIC

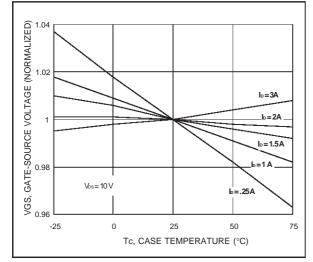
Symbol	Parameter			Min.	Тур.	Max.	Unit
V _{(BR)DSS}	$V_{GS} = 0 V$	$I_{DS} = 1 \text{ mA}$		65			V
IDSS	$V_{GS} = 0 V$	V _{DS} = 28 V				1	μΑ
I _{GSS}	V _{GS} = 20 V	$V_{DS} = 0 V$				1	μΑ
V _{GS(Q)}	V _{DS} = 28 V	I _D = 250 mA		2.0		5.0	V
V _{DS(ON)}	V _{GS} = 10 V	I _D = 3 A			0.7	0.9	V
g fs	V _{DS} = 10 V	I _D = 5 A		2.0	2.7		mho
Ciss	VGS = 0 V	V _{DS} = 28 V	f = 1 MHz		86		pF
C _{OSS}	$V_{GS} = 0 V$	V _{DS} = 28 V	f = 1 MHz		47		рF
C _{RSS}	$V_{GS} = 0 V$	$V_{DS} = 28 V$	f = 1 MHz		3.6		pF

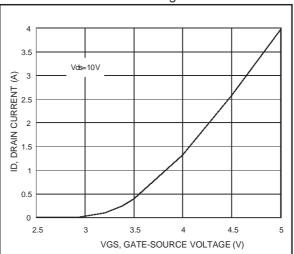
DYNAMIC

Symbol	Parameter			Min.	Тур.	Max.	Unit	
Роит	V _{DD} = 28 V	f = 945 MHz	I _{DQ} = 250 mA		45			W
Gps	V _{DD} = 28 V	f = 945 MHz	Pout = 45 W	I _{DQ} = 250 mA	13	14.5		dB
η _D	V _{DD} = 28 V	f = 945 MHz	P _{OUT} = 45 W	I _{DQ} = 250 mA	50			%
LOAD Mismatch	V _{DD} = 28 V ALL PHASE	f = 945 MHz ANGLES	P _{OUT} = 45 W	I _{DQ} = 250 mA	10:1			VSWR

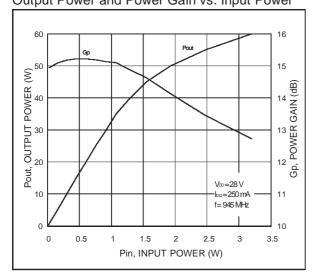

IMPEDANCE DATA

PD57045S

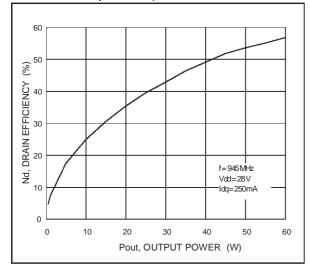

1				
	Frequency MHz	Zin Ω	ZdI Ω	
	945	.80 + j 1.24	1.66 - j.44	

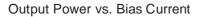

TYPICAL PERFORMANCE Capacitance vs. Drain Voltage

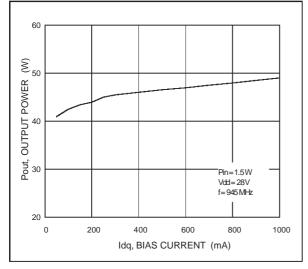
Gate-Source Voltage vs. Case Temperature

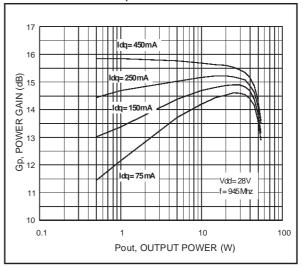


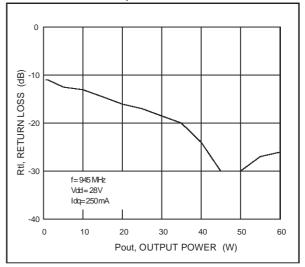
Drain Current vs. Gate Voltage

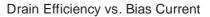



57


TYPICAL PERFORMANCE - **PD57045S** Output Power and Power Gain vs. Input Power

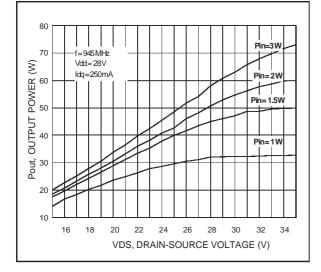

Drain Efficiency vs. Output Power

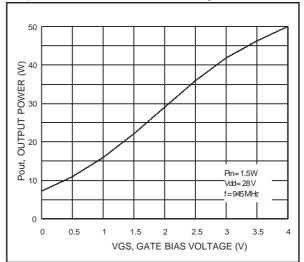




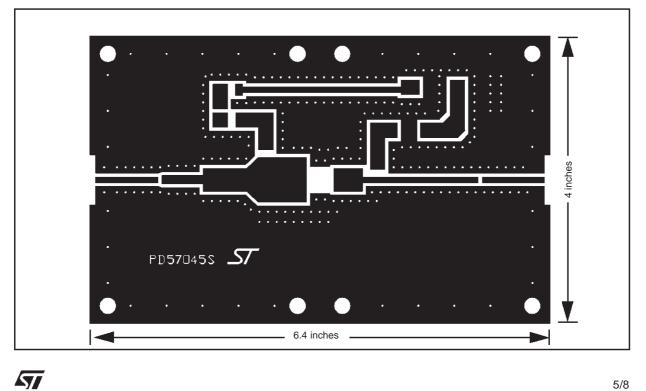

Power Gain vs. Output Power

Return Loss vs. Output Power

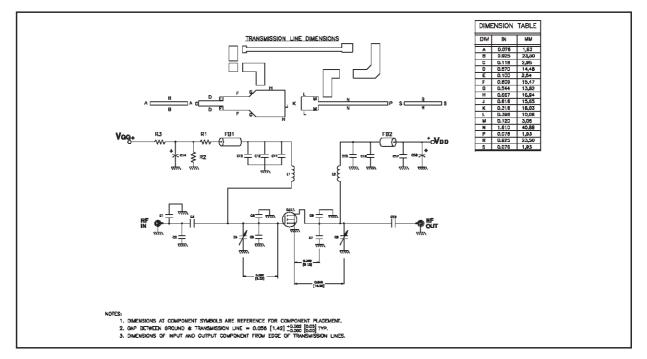




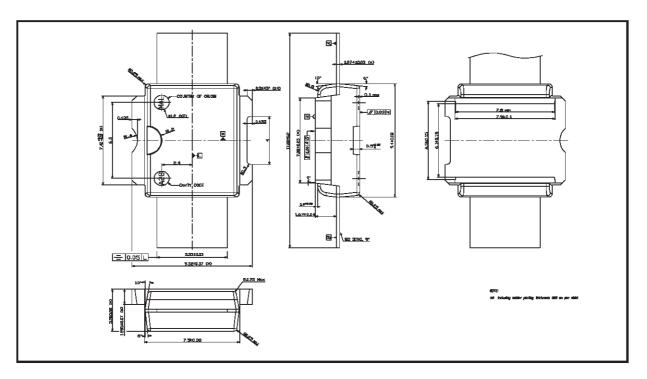
57


TYPICAL PERFORMANCE PD57045S Output Power vs. Drain Voltage

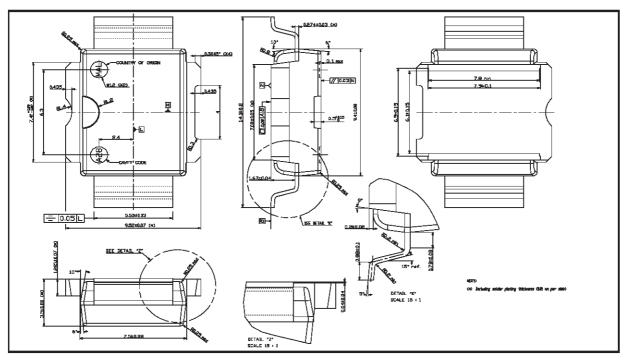
Output Power vs. Gate Bias Voltage



TEST CIRCUIT PHOTOMASTER


5/8

TEST CIRCUIT SCHEMATIC


TEST CIRCUIT COMPONENT PART LIST

L1	INDUCTOR, 5TURNS AIR WOUND #22AWG, ID=0.059{1.49}, NYLON COATED MAGNET WIRE	C7	7.5pF ATC 100B SURFACE MOUNT CERAMIC CHIP CAPACITOR
L2	INDUCTOR, 5TURNS AIR WOUND #22AWG, ID=0.059{1.49}, NYLON COATED MAGNET WIRE	C8	7.5pF ATC 100B SURFACE MOUNT CERAMIC CHIP CAPACITOR
FB1	SHIELD BEAD SURFACE MOUNT EMI	C9	0.8-8.0pF GIGA TRIM VARIABLE CAPACITOR
FB2	SHIELD BEAD SURFACE MOUNT EMI	C10	47pF ATC 100B SURFACE MOUNT CERAMIC CHIP CAPACITOR
R1	18K OHM, 1W SURFACE MOUNT CHIP RESISTOR	C11	47pF ATC 100B SURFACE MOUNT CERAMIC CHIP CAPACITOR
R2	4.7M OHM, 1W SURFACE MOUNT CHIP RESISTOR	C12	1000pF ATC 700B SURFACE MOUNT CERAMIC CHIP CAPACITOR
R3	120 OHM,2W SURFACE MOUNT CHIP RESISTOR	C13	0.1μF/500V SURFACE MOUNT CERAMIC CHIP CAPACITOR
C1	3pF ATC 100B SURFACE MOUNT CERAMIC CHIP CAPACITOR	C14	10μ F/50V ALUMINNUM ELECTROLYTIC RADIAL LEAD CAPACITOR
C2	3pF ATC 100B SURFACE MOUNT CERAMIC CHIP CAPACITOR	C15	47pF ATC 100B SURFACE MOUNT CERAMIC CHIP CAPACITOR
C3	47pF ATC 100B SURFACE MOUNT CERAMIC CHIP CAPACITOR	C16	100pF ATC 100B SURFACE MOUNT CERAMIC CHIP CAPACITOR
C4	0.8-8.0pF GIGA TRIM VARIABLE CAPACITOR	C17	0.1μF/500V SURFACE MOUNT CERAMIC CHIP CAPACITOR
C5	7.5pF ATC 100B SURFACE MOUNT CERAMIC CHIP CAPACITOR	C18	220μF/63V ALUMINUM ELECTROLYTIC RADIAL LEAD CAPACITOR
C6	7.5pF ATC 100B SURFACE MOUNT CERAMIC CHIP CAPACITOR	Board	ROGER, ULTRA LAM 2000 THK 0.030" $\mathcal{E}_{\rm r}$ = 2.55 2oz ED Cu 2 SIDES

PowerSO-10RF (Straight Lead) MECHANICAL DATA

PowerSO-10RF (Formed Lead) MECHANICAL DATA

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

All other names are the property of their respective owners.

STMicroelectronics GROUP OF COMPANIES Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco -Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

