HIGH VOLTAGE NPN MULTIEPITAXIAL FAST-SWITCHING TRANSISTOR

- HIGH VOLTAGE CAPABILITY
- VERY HIGH SWITCHING SPEED
- LOW BASE-DRIVE REQUIREMENTS

APPLICATIONS

- ELECTRONIC BALLASTS FOR FLUORESCENT LIGHTING
- SWITCH MODE POWER SUPPLIES

DESCRIPTION

The BU505 is a high voltage NPN fastswitching transistor designed to be used in lighting application, like electronic ballas for fluorescent lamps.
Its characteristics make it also ideal for power supplies.

INTERNAL SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\mathrm{CES}}$	Collector-Emitter Voltage $\left(\mathrm{V}_{\mathrm{BE}}=0\right)$	1500	V
$\mathrm{~V}_{\text {CEO }}$	Collector-Emitter Voltage $\left(\mathrm{I}_{\mathrm{B}}=0\right)$	700	V
I_{C}	Collector Current	2.5	A
I_{CM}	Collector Peak Current $\left(\mathrm{t}_{\mathrm{p}}<5 \mathrm{~ms}\right)$	4	A
I_{B}	Base Current	1	A
I_{BM}	Base Peak Current $\left(\mathrm{t}_{\mathrm{p}}<5 \mathrm{~ms}\right)$	2	A
$\mathrm{P}_{\text {tot }}$	Total Dissipation at $\mathrm{T}_{\mathrm{C}} \leq 25^{\circ} \mathrm{C}$	75	W
$\mathrm{~T}_{\text {stg }}$	Storage Temperature	-65 to 150	${ }^{\circ} \mathrm{C}$
T_{j}	Max. Operating Junction Temperature	150	${ }^{\circ} \mathrm{C}$

BU505

THERMAL DATA

R $_{\text {thj-case }}$	Thermal Resistance Junction-case	Max	1.67	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C}\right.$ unless otherwise specified)

Symbol	Parameter	Test Conditions		Min.	Typ.	Max.	Unit
Ices	Collector Cut-off Current (V be $=0$)	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{CES}} \\ & \mathrm{~V}_{C E}=\mathrm{V}_{C E S} \end{aligned}$	$\mathrm{T}_{\text {case }}=125^{\circ} \mathrm{C}$			$\begin{gathered} 0.15 \\ 1 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Iebo	Emitter Cut-off Current (I = $=0$)	$\mathrm{V}_{\mathrm{EB}}=5 \mathrm{~V}$				1	mA
$\mathrm{V}_{\text {CEO }}$ (sus)	Collector-emitter Sustaining Voltage	$\mathrm{IC}=100 \mathrm{~mA}$	$\mathrm{L}=25 \mathrm{mH}$	700			V
$\mathrm{V}_{\text {CE(sat)* }}$	Collector-emitter Saturation Voltage	$\mathrm{IC}=2 \mathrm{~A}$	$\mathrm{I}_{\mathrm{B}}=0.9 \mathrm{~A}$			5	V
$\mathrm{V}_{\mathrm{BE} \text { (sat) }}{ }^{*}$	Base-emitter Saturation Voltage	$\mathrm{IC}=2 \mathrm{~A}$	$\mathrm{I}_{\mathrm{B}}=0.9 \mathrm{~A}$			1.3	V
$\mathrm{I}_{\mathrm{s} / \mathrm{b}}$	Second Breakdown Current	$\mathrm{V}_{\mathrm{CE}}=120 \mathrm{~V}$	$\mathrm{t}=200 \mu \mathrm{~s}$	2			A
$\mathrm{t}_{\text {s }}$	Storage Time	$\begin{aligned} & \mathrm{V}_{\text {Clamp }}=250 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{B} 1}=0.7 \mathrm{~A} \\ & \mathrm{R}_{\mathrm{bb}}=0 \end{aligned}$	$\begin{aligned} & \mathrm{IC}=2 \mathrm{~A} \\ & V_{\text {be (off) }}=-5 \mathrm{~V} \\ & \mathrm{~L}=200 \mu \mathrm{H} \end{aligned}$		$\begin{gathered} 2 \\ 350 \end{gathered}$		$\begin{aligned} & \mu \mathrm{s} \\ & \mathrm{~ns} \end{aligned}$

* Pulsed: Pulse duration = $300 \mu \mathrm{~s}$, duty cycle 1.5%.

TO-220 MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A	4.40		4.60	0.173		0.181
C	1.23		1.32	0.048		0.051
D	2.40		2.72	0.094		0.107
D1		1.27			0.050	
E	0.49		0.70	0.019		0.027
F	0.61		0.88	0.024		0.034
F1	1.14		1.70	0.044		0.067
F2	1.14		1.70	0.044		0.067
G	4.95		5.15	0.194		0.203
G1	2.4		2.7	0.094		0.106
H2	10.0		10.40	0.393		0.409
L2		16.4			0.645	
L4	13.0		14.0	0.511		0.551
L5	2.65		2.95	0.104		0.116
L6	15.25		15.75	0.600		0.620
L7	6.2		6.6	0.244		0.260
L9	3.5		3.93	0.137		0.154
DIA.	3.75		3.85	0.147		0.151

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.
© 1997 SGS-THOMSON Microelectronics - Printed in Italy - All Rights Reserved
SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

