N-CHANNEL ENHANCEMENT MODE PowerMESH ${ }^{\text {тм }}$ MOSFET

PRELIMINARY DATA

TYPE	V ${ }_{\text {dss }}$	RdS(on)	ID
STU13NB60	600 V	$<0.45 \Omega$	12.6 A

- TYPICAL RDs(on) $=0.4 \Omega$
- EXTREMELY HIGH dv/dt CAPABILITY
- 100\% AVALANCHE TESTED
- VERY LOW INTRINSIC CAPACITANCES
- GATE CHARGE MINIMIZED
- $\pm 30 \mathrm{~V}$ GATE TO SOURCE VOLTAGE RATING

DESCRIPTION

Using the latest high voltage MESH OVERLAY™ process, SGS-Thomson has designed an advanced family of power MOSFETs with outstanding performances. The new patent pending strip layout coupled with the Company's proprietary edge termination structure, gives the lowest $\mathrm{R}_{\mathrm{DS}(o n)}$ per area, exceptional avalanche and $\mathrm{dv} / \mathrm{dt}$ capabilities and unrivalled gate charge and switching characteristics.

APPLICATIONS

- SWITCH MODE POWER SUPPLIES (SMPS)
- DC-AC CONVERTERS FOR WELDING EQUIPMENT AND UNINTERRUPTIBLE POWER SUPPLIES AND MOTOR DRIVE

INTERNAL SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{DS}	Drain-source Voltage $\left(\mathrm{V}_{\mathrm{GS}}=0\right)$	600	V
$\mathrm{~V}_{\mathrm{DGR}}$	Drain- gate Voltage $\left(\mathrm{R}_{\mathrm{GS}}=20 \mathrm{k} \Omega\right)$	600	V
$\mathrm{~V}_{\mathrm{GS}}$	Gate-source Voltage	± 30	V
ID_{D}	Drain Current (continuous) at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	12.6	A
I_{D}	Drain Current (continuous) at $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$	7.9	A
$\mathrm{I}_{\mathrm{DM}}(\cdot)$	Drain Current (pulsed)	50.4	A
$\mathrm{P}_{\text {tot }}$	Total Dissipation at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	160	W
	Derating Factor	1.28	$\mathrm{~W} /{ }^{\circ} \mathrm{C}$
$\mathrm{dv} / \mathrm{dt}(1)$	Peak Diode Recovery voltage slope	4.5	$\mathrm{~V} / \mathrm{ns}$
$\mathrm{T}_{\mathrm{stg}}$	Storage Temperature	-65 to 150	${ }^{\circ} \mathrm{C}$
T_{j}	Max. Operating Junction Temperature	150	${ }^{\circ} \mathrm{C}$

(•) Pulse width limited by safe operating area
(1) $\mathrm{I}_{\mathrm{SD}} \leq 13 \mathrm{~A}, \mathrm{di} / \mathrm{dt} \leq 200 \mathrm{~A} / \mu \mathrm{S}, \mathrm{V}_{\mathrm{DD}} \leq \mathrm{V}_{(\mathrm{BR}) \mathrm{DSS}}, \mathrm{Tj} \leq \mathrm{T}_{\mathrm{JMAX}}$

This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to change without notice.

THERMAL DATA

$R_{\text {thj-case }}$	Thermal	Resistance Junction-case	Max	0.78	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$R_{\text {thj-amb }}$	Thermal	Resistance Junction-ambient	Max	62.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {thc-sink }}$	Thermal	Resistance Case-sink	Typ	0.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\text {I }}$	Maximum Lead Temperature For Soldering Purpose	300	${ }^{\circ} \mathrm{C}$		

AVALANCHE CHARACTERISTICS

Symbol	Parameter	Max Value	Unit
I_{AR}	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T_{j} max, $\left.\delta<1 \%\right)$	12.6	A
E_{AS}	Single Pulse Avalanche Energy $\left(\right.$ starting $\left.T_{j}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{D}}=\mathrm{I}_{A R}, V_{D D}=50 \mathrm{~V}\right)$	800	mJ

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C}$ unless otherwise specified)
OFF

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$V_{\text {(BR) }}$ DSS	Drain-source Breakdown Voltage	$\begin{array}{ll} \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A} & \mathrm{~V}_{\mathrm{GS}}=0 \\ @ 100^{\circ} \mathrm{C} & \\ \hline \end{array}$	600			V
Idss	Zero Gate Voltage Drain Current ($\mathrm{V}_{\mathrm{GS}}=0$)	$\begin{array}{\|ll\|} \hline \text { V } D S \\ \text { V Max Rating } & \\ \text { V Max Rating } & \mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C} \\ \hline \end{array}$			$\begin{gathered} 1 \\ 50 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
Igss	Gate-body Leakage Current ($\mathrm{V}_{\mathrm{DS}}=0$)	$\mathrm{V}_{\mathrm{GS}}= \pm 30 \mathrm{~V}$			± 100	nA

ON (*)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	Gate Threshold Voltage	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}} \quad \mathrm{ID}_{\mathrm{D}}=250 \mu \mathrm{~A}$	3	4	5	V
RDS(on)	Static Drain-source On Resistance	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V} \quad \mathrm{ID}_{\mathrm{D}}=6.3 \mathrm{~A}$	0.4	0.45	Ω	
$\mathrm{I}_{\mathrm{D}(\mathrm{on})}$	On State Drain Current	$\mathrm{V}_{\mathrm{DS}}>\mathrm{I}_{\mathrm{D}(o n)} \times \mathrm{RDS}^{(o n) \max }$ $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$	12.6			A

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$\mathrm{g}_{\mathrm{fs}}(*)$	Forward Transconductance	$\mathrm{V}_{\mathrm{DS}}>\mathrm{I}_{\mathrm{D} \text { (on) }} \times \mathrm{R}_{\text {DS(on) } \max } \quad \mathrm{I}_{\mathrm{D}}=6.3 \mathrm{~A}$	6	9		S
$\begin{aligned} & \mathrm{C}_{\text {iss }} \\ & \mathrm{C}_{\text {oss }} \\ & \mathrm{C}_{\text {rss }} \end{aligned}$	Input Capacitance Output Capacitance Reverse Transfer Capacitance	$\mathrm{V}_{\mathrm{DS}}=25 \mathrm{~V} \quad \mathrm{f}=1 \mathrm{MHz} \quad \mathrm{VGS}_{\mathrm{GS}}=0$		$\begin{gathered} 2950 \\ 370 \\ 33 \end{gathered}$	$\begin{gathered} 3840 \\ 480 \\ 43 \end{gathered}$	pF pF pF

ELECTRICAL CHARACTERISTICS (continued)
SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$\begin{gathered} \mathrm{t}_{\mathrm{d}(\text { on })} \\ \mathrm{t}_{\mathrm{r}} \end{gathered}$	Turn-on Time Rise Time	$\begin{array}{\|lc} \hline \mathrm{V}_{\mathrm{DD}}=300 \mathrm{~V} & \mathrm{I}_{\mathrm{D}}=6.3 \mathrm{~A} \\ \mathrm{R}_{\mathrm{G}}=4.7 \Omega & \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V} \\ \text { (see test circuit, figure } 3 \text {) } \\ \hline \end{array}$		$\begin{aligned} & 30 \\ & 14 \end{aligned}$	$\begin{aligned} & 42 \\ & 20 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$\begin{aligned} & \mathrm{Q}_{\mathrm{g}} \\ & \mathrm{Q}_{\mathrm{gs}} \\ & \mathrm{Q}_{\mathrm{gd}} \end{aligned}$	Total Gate Charge Gate-Source Charge Gate-Drain Charge	$\mathrm{V}_{\mathrm{DD}}=480 \mathrm{~V} \mathrm{I}_{\mathrm{D}}=12.6 \mathrm{~A} \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$		$\begin{aligned} & \hline 65 \\ & 18 \\ & 27 \end{aligned}$	91	$\begin{aligned} & \mathrm{nC} \\ & \mathrm{nC} \\ & \mathrm{nC} \end{aligned}$

SWITCHING OFF

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
t_{r} (Voff)	Off-voltage Rise Time	$\mathrm{V}_{\mathrm{DD}}=480 \mathrm{~V} \quad \mathrm{ID}=12.6 \mathrm{~A}$		21	29	ns
t_{f}	Fall Time	$\mathrm{R}_{\mathrm{G}}=4.7 \Omega \quad \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$		18	25	ns
t_{c}	Cross-over Time	(see test circuit, figure 5$)$		32	45	ns

SOURCE DRAIN DIODE

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$\begin{gathered} \mathrm{I}_{\mathrm{SD}} \\ \mathrm{I}_{\mathrm{SDM}}(\cdot) \end{gathered}$	Source-drain Current Source-drain Current (pulsed)				12.6	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \end{aligned}$
V SD (*)	Forward On Voltage	$\mathrm{I}_{\mathrm{SD}}=12.6 \mathrm{~A} \quad \mathrm{~V}_{\mathrm{GS}}=0$			1.6	V
trr $Q_{r r}$ IRRM	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$\begin{aligned} & \mathrm{I}_{\mathrm{SD}}=12.6 \mathrm{~A} \quad \text { di/dt }=100 \mathrm{~A} / \mathrm{\mu s} \\ & \mathrm{~V}_{\mathrm{DD}}=100 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{j}}=150^{\circ} \mathrm{C} \\ & \text { (see test circuit, figure } 5 \text {) } \end{aligned}$		$\begin{gathered} 820 \\ 9.6 \\ 23.5 \end{gathered}$		ns $\mu \mathrm{C}$ A

(*) Pulsed: Pulse duration = $300 \mu \mathrm{~s}$, duty cycle 1.5%
(•) Pulse width limited by safe operating area

Fig. 1: Unclamped Inductive Load Test Circuit

Fig. 3: Switching Times Test Circuits For
Resistive Load

Fig. 2: Unclamped Inductive Waveform

Fig. 4: Gate Charge test Circuit

Fig. 5: Test Circuit For Inductive Load Switching And Diode Recovery Times

Max220 MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A	4.3		4.6	0.169		0.181
A1	2.2		2.4	0.087		0.094
A2	2.9		3.1	0.114		0.122
b	0.7		0.93	0.027		0.036
b1	1.25		1.4	0.049		0.055
b2	1.2		1.38	0.047		0.054
c	0.45		0.6		0.18	0.023
D	15.9		16.3		0.626	0.641
D1	9		9.35	0.354		0.368
D2	0.8		1.2	0.031		0.047
D3	2.8		3.2	0.110		0.126
e	2.44		2.64	0.096		0.104
E	10.05		10.35	0.396		0.407
L	13.2		13.6	0.520		0.535
L1	3		3.4	0.118		0.133

P011R

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are notauthorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.
© 1997 SGS-THOMSON Microelectronics - Printed in Italy - All Rights Reserved
SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - Canada- China- France - Germany - Hong Kong - Italy - Japan- Korea - Malaysia - Malta - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

