

SD1565

RF & MICROWAVE TRANSISTORS UHF PULSED APPLICATIONS

- 500 WATTS @ 250µSec PULSE WIDTH, 10% DUTY CYCLE
- REFRACTORY GOLD METALLIZATION
- EMITTER BALLASTING AND LOW RESISTANCE FOR RELIABILITY AND RUGGEDNESS
- INFINITE VSWR CAPABILITY AT SPECIFIED OPERATING CONDITIONS
- INPUT MATCHED, COMMON BASE CONFIGURATION
- BALANCED CONFIGURATION

1. Collector

2. Base

3. Emitter

4. Base

DESCRIPTION

The SD1565 is a hermetically sealed, gold metallized silicon NPN pulse power transistor mounted in a common base balanced configuration. The SD1565 is designed for applications requiring high peak power and low duty cycles within the frequency range of 400 - 500 MHz.

ABSOLUTE MAXIMUM RATINGS ($T_{case} = 25^{\circ}C$)

Symbol	Parameter	Value	Unit	
Vсво	Collector-Base Voltage	65	V	
V _{CES}	Collector-Emitter Voltage	65	V	
V _{EBO}	Emitter-Base Voltage	3.5	V	
lc	Device Current	43.2	А	
PDISS	Power Dissipation	1167	W	
TJ	Junction Temperature	+200	°C	
T _{STG}	Storage Temperature	– 65 to +200	°C	

THERMAL DATA

RTH(j-c) Junction-Case Thermal Resistance 0.15 °C/W

ELECTRICAL SPECIFICATIONS (Tcase = 25° C)

STATIC

Symbol	Test Conditions	Value			Unit	
		Min.	Тур.	Max.	Unit	
BV _{CBO}	$I_C = 50 \text{ mA}$	$I_E = 0 mA$	65	_	_	V
BV _{CES}	$I_C = 50 \text{ mA}$	$V_{BE} = 0 V$	65	_		V
BV _{EBO}	$I_E = 10 \text{ mA}$	$I_{C} = 0 \text{ mA}$	3.5	_	_	V
ICES	$V_{CE} = 30 V$	$I_E = 0 mA$	—	—	15	mA
h _{FE}	$V_{CE} = 5 V$	$I_{C} = 5 A$	20		200	

DYNAMIC

Symbol	Test Conditions			Value			Unit
				Min.	Тур.	Max.	
Роит	f = 425 MHz	$P_{IN} = 54 \text{ W}$	$V_{\text{CE}} = 40 \text{ V}$	500	—	—	W
PG	f = 425 MHz	$P_{IN} = 54 \text{ W}$	$V_{CE}=40\ V$	9.7	_	—	dB
ηc	f = 425 MHz	$P_{IN} = 54 \text{ W}$	$V_{CE} = 40 V$	50			%

Note: Pulse Width = 250μ Sec, Duty Cycle = 10%

This device is suitable for use under other pulse width/duty cycle conditions. Please contact the factory for specific applications assistance.

TYPICAL PERFORMANCE (P.W. = 250μ S, D.C. = 10%)

POWER OUTPUT vs POWER INPUT

POWER GAIN vs FREQUENCY

TYPICAL PERFORMANCE (P.W. = 250μ S, D.C. = 10%)

IMPEDANCE DATA (P.W. = 250μ S, D.C. = 10%)

TYPICAL PERFORMANCE (P.W. = 60μ S, D.C. = 2%)

IMPEDANCE DATA (P.W. = 60μ S, D.C. = 2%)

TEST CIRCUIT

SD1565

PACKAGE MECHANICAL DATA

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

©1994 SGS-THOMSON Microelectronics - All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands -Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

