M5481

LED DISPLAY DRIVER

FEATURES

- 2 DIGIT LED DRIVER (14 segments)
- CURRENT GENERATOR OUTPUTS (no registor required)
- CONTINUOU BRIGHTNESS CONTROL
- SERIAL DATA INPUT
- DATA ENABLE
- WIDE SUPPLY VOLTAGE OPERATION
- TLL COMPATIBILITY
- APPLICATION EXAMPLES
- MICROPROCESSOR DISPLAYS
- INDUSTRIAL CONTROL INDICATOR
- RELAY DRIVER
- INSTRUMENTATION READOUTS

DESCRIPTION

The M5481 is a monolithic MOS integrated circuit produced with a N -channel silicon gate technology. It uses the M5450 die packaged in a 20-pin plastic package copper frame, making it ideal for a 1-digit display. A single pin controls the LED display brightness by setting a reference current through a variable resistor connected either to $V_{D D}$ or to a separate supply of 13.2 V maximum.

The M5481 is a pin-to-pin replacement of the NS MM 5481.

PIN CONNECTIONS

1-BLOC DIAGRAM

Figure 1.

2 - ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{DD}	Supply Voltage	-0.3 to 15	V
Vi	Input Voltage	-0.3 to 15	V
Vo(off)	Off-state Output Voltage	15	V
Io	Output Sink Current	40	mA
$\mathrm{P}_{\text {tot }}$	Total package power Dissipation	at $25^{\circ} \mathrm{C}$	
		$\mathrm{t} 85^{\circ} \mathrm{C}$	1.5
	Junction Temperature	800	W
$\mathrm{~T}_{\text {oper }}$	Operating Temperature Range	150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Staorage Temperature Range	$-25,+85$	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed under "Absolute Maximum Ratings" may cause permanent damage to the device and affect its reliability.

3- STATIC ELECTRICAL CHARACTERISTICS

($\mathrm{T}_{\text {amb }}$ within operational range, $\mathrm{V}_{\mathrm{DD}}=4.75 \mathrm{~V}$ to $13.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$, unless otherwise specified)

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
$V_{\text {DD }}$	Supply Voltage		4.5		13.2	V
Idd	Supply Current	$\mathrm{V}_{\mathrm{DD}}=13.2 \mathrm{~V}$			7	mA
Vi	Input Voltages Logical "0" Level Logical "1" Level	$+10 \mu \mathrm{~A}$ Input Bias $4.75 \leq V_{D D} \leq 5.25$ $V_{D D}>5.25$	$\begin{gathered} -0.3 \\ 2.2 \\ V_{D D} \\ 2 \end{gathered}$		$\begin{gathered} 0.8 \\ \mathrm{~V}_{\mathrm{DD}} \\ \mathrm{~V}_{\mathrm{DD}} \end{gathered}$	V V V
IB	Brightness Input Current (Note 2)		0		0.75	mA
VB	Brightness Input Voltage (pin9)	$\begin{aligned} & \text { Input Curren }=750 \mu \mathrm{~A} \\ & \mathrm{~T}_{\text {amb }}=25^{\circ} \mathrm{C} \end{aligned}$	3		4.3	V
Vo(off)	Off-state Output Voltage				13.2	V
lo	Output Sink Current (Note 3) Segment OFF Segment ON	$\begin{aligned} & \mathrm{Vo}=3 \mathrm{~V} \\ & \mathrm{Vo}=1 \mathrm{~V}(\text { Note } 4) \\ & \text { Brightness } \mathrm{In} .=0 \mu \mathrm{~A} \\ & \text { Brightness } \mathrm{In} .=100 \mu \mathrm{~A} \\ & \text { Brightness } \mathrm{In} .=750 \mu \mathrm{~A} \end{aligned}$	$\begin{gathered} 0 \\ 2 \\ 12 \end{gathered}$	$\begin{aligned} & 2.7 \\ & 15 \end{aligned}$	$\begin{gathered} 10 \\ 10 \\ 4 \\ 25 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \\ & \mathrm{~mA} \\ & \mathrm{~mA} \end{aligned}$
fclock	Input Clock Frequency		0		0.5	MHz
Io	Output Matching (Note 1)				± 20	\%

Note 1 Output matching is calculated as the percent variation from Imax+Imin/2
Note 2 With a fixed resistor on the brightness input some variation in brightness will occur from one device to another.
Note 3 Absolute maximum for each output should be limited to 40 mA .
Note 4 the Vo voltage should be regulated by the user.

4- FUNCTIONAL DESCRIPTION

The M5481 uses the M5450 die which is packaged to operate 2-digit alphanumeric displays with minimal interface with the display and the data source.
Serial data transfer from the data source to the display driver is accomplished with 2 signals, serial data and clock. using a format of a leading " 1 " followed by the 35 data bits allows data transfer without an additional load signal.
The 35 data bits are latched after the 36th bit is complete, thus providing non-multiplexed, direct drive to the display. Outputs change only if the serial data bits differ from the previous time. Display brightness is determined by control of the output current for LED displays. A 1 nF capacitor should
be connected to brightness control (pin 9) to prevent possible oscillations.
A bloc diagram is shown on Figure 1. The output current is typically 20 times greater than the current into pin 9 , which is set by an external variable resistor.
The latter is an internal limiting resistor of 400Ω nominal value.
Figure 2 shows the input data format. A start bit of logical "1" precedes the 35 bits of data. At the 36th clock a LOAD is generated synchronously with the high state of the clock, which loads the 35 bits of the shift registers into the latches.

Figure 2. Input Data Format

At the low state of the clock a RESET signal is generated which clears all the shift registers for the next set of data. The shift registers are static master slave configurations. There is no clear for the master portion of the first shift register, thus allowing continuous operation.
There must be a complete set of 36 clocks or the shift registers will not clear.
When power is first applied to the chip an internal power ON reset signal is generated which resets all registers and all latches. The START bit and the first clock reset the chip to its normal operation.
Figure 3 shows the timing relationships between Data, Clock and DATA ENABLE.
A maximum clock frequency of 0.5 MHz is assumed.
Figure 4 shows the Output Data Format for the M5481. Because it uses only 14 of the possible 35 outputs, 21 of the bits are "Don't Cares".
For applications where a lesser number of outputs are used it is possible to either increase the current per output or operate the part at higher than 1V Vout.

The following equation can be used for calculations.
$\mathrm{Tj}=\left[(\right.$ Vout $)\left(\mathrm{l}_{\mathrm{LED}}\right)($ No. of segments $\left.)+\mathrm{V}_{\mathrm{DD}} \mathrm{x} 7 \mathrm{~mA}\right]$ $x\left(80^{\circ} \mathrm{C} / \mathrm{W}\right)+$ Tamb
where:
$\mathrm{Tj}=$ junction temperature ($150^{\circ} \mathrm{Cmax}$)
Vout= voltage at the LED driver outputs
ILED= LED current
$80^{\circ} \mathrm{C} / \mathrm{W}=$ thermal coefficient of the package Tamb=ambiant temperature

Figure 3.

Figure 4. Serial Bus/Outputs Correspondance

5450	34	33	32	31	30	29	28	27	26	25	24	23	22	21	20	19	18	START
5481	X	X	X	X	13	X	X	X	X	X	12	11	10	9	X	X	X	START
5450	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	START
5481	X	8	7	6	5	X	X	X	X	4	3	2	1	X	X	X	X	START

5 - TYPICAL APPLICATION

BASIC electronically tuned TV system.

6 - POWER DISSIPATION OF THE IC

The power dissipation of the IC can be limited using different configurations.

In this application R must be chosen by taking into account the worst operating conditions.
R is determined by the maximum number of segments activated.

$$
R=\frac{V_{C}-V_{\text {DMAX }}-v_{\text {OMIN }}}{N_{\text {MAX }}{ }^{\times I} D}
$$

The worst case condition for the device is when roughly half of the maximum number of segments are activated.
It must be checked that the total power dissipation does not exceed the absolute maximum ratings of the device.
In critical cases more resistors can be used in conjunction with groups of segments. In this case the current variation in the single resistor is reduced and $\mathrm{P}_{\text {tot }}$ limited.

In this configuration the drop on the serial connected diodes is quite stable if the diodes are properly chosen.
The total power dissipation of the IC depends only, in first approximation, on the number of segments activated.

In this configuration $\mathrm{V}_{\mathrm{OUT}}+\mathrm{V}_{\mathrm{D}}$ is constant. the total power dissipation of the IC depends only on the number of segments activated.

7 - PACKAGE MECHANICAL DATA

20 Pins - Plastic Dip

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without the express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics
© 2000 STMicroelectronics - All Rights Reserved.
Purchase of $\mathrm{I}^{2} \mathrm{C}$ Components by STMicroelectronics conveys a license under the Philips $\mathrm{I}^{2} \mathrm{C}$ Patent. Rights to use these components in an $I^{2} \mathrm{C}$ system is granted provided that the system conforms to the $\mathrm{I}^{2} \mathrm{C}$ Standard Specification as defined by Philips.
STMicroelectronics Group of Companies
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain Sweden - Switzerland - United Kingdom - U.S.A.
http://www.st.com

