

IP Library: High PSRR, Low power, 80mA Low Dropout Voltage Regulator

PRODUCT PREVIEW

- ANALOG BASEBAND REGULATOR
- VERY LOW DROPOUT VOLTAGE: 50mV
- HIGH PSRR: 60dB
- LOW QUIESCENT CURRENT: 130µA
- LOW OUTPUT VOLTAGE NOISE
- NO CURRENT IN POWER DOWN MODE
- SHORT CIRCUIT PROTECTION
- SMALL DECOUPLING CERAMIC CAPACITOR

TYPICAL APPLICATIONS

- Cellular and Cordless phones supplied by 1 cell Lithium-ion battery / 3 cells Ni-MH or Ni-Cd battery.
- PDA (Personal Digital Assistant), Smart phone.
- Portable equipment.
- Supply for Analog and Mixed-signal devices for cellular phone.

APPLICATION NOTE

An external capacitor ($C_{OUT}=1\mu F$) with an equivalent serial resistance (ESR) in the range 0.02 to 0.6 Ω is used for regulator stability.

Figure 1: Block Diagram

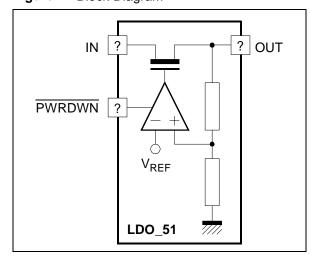
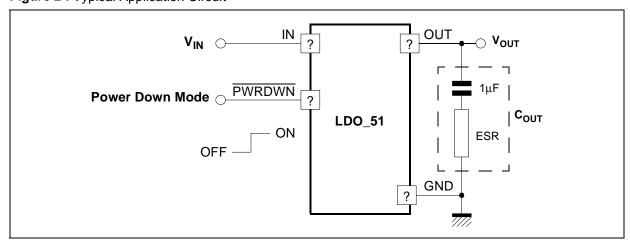



Figure 2: Typical Application Circuit

June 2002 1/4

ELECTRICAL CHARACTERISTICS

 $3V < V_{IN} < 5.5V, \, -55^{\circ}C < T_{A} < +125^{\circ}C, \, V_{REF} = 2.8V, \, 0.8 \mu F < C_{OUT} < 1.2 \mu F, \, 20 m\Omega < ESR < 0.6 \Omega.$ $100 \mu A < I_{LOAD} < 80 mA.$

Typical case : V_{IN} = 4V, T = 25°C, I_{OUT} = 40mA.

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Input Voltage Range (Note 1)	V _{IN}		3		5,5	V
Output Voltage	V _{OUT}			2,8		V
Output Voltage Accuracy			-3		3	%
Output current	I _{OUT}		0,1		80	mA
P _{MOS} Output Resistance	R _{ON}				0,5	Ω
Dropout Voltage	ΔV _{DO}	$\Delta V_{OUT} = 50 \text{mV},$ $I_{LOAD} = 80 \text{mA}$			50	mV
		(Note 2)	170			
Quiescent current	IQ	$I_{LOAD} = 100 \mu A$		30	50	μΑ
		$I_{LOAD} = 80 \text{mA}$		130	170	
Power down mode quiescent current	I_{QPDM}	Power down active		100		nA
Power Supply Rejection Ratio	PSRR	f < 10KHz	50	60		dB
		f < 100KHz	40	50		
Line Regulation	Lir	I _{LOAD} = 80mA, V _{IN} = 3V to 5.1V		3	6	mV
Load Regulation	Ldr			30	45	mV
Line Transient	Lirt	$\Delta V_{IN} = 300 \text{mV}$ $t_{RISE} = t_{FALL} = 10 \mu \text{s}$			1	mV
Load Transient	Ldtr	10% to 90% and 90% to 10% of 80mA in 10μs			1	mV
Output Noise Voltage	en	100Hz			1,5	$\frac{\mu V}{\sqrt{Hz}}$
		1KHz			550	nV
		100KHz			300	√Hz
Output decoupling Capacitor	C _{OUT}			1		μF
Settling time		From power down to active mode			25	μs
Short Circuit Current Limit	I _{SHORT}		180	230	300	mA

Notes: 1. Above characteristics are given for 3V minimum input operating range voltage, but regulator is operational with 2.7V minimum input voltage.

2. All parameters are guaranteed with 170mV Dropout voltage.

2/4

TYPICAL CHARACTERISTICS

Figure 3: Line transient

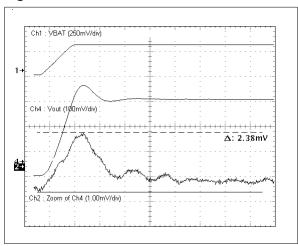


Figure 5 : Load Transient (rising edge)

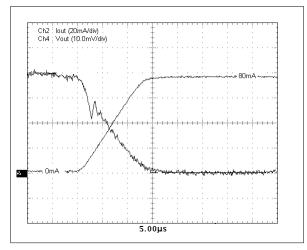


Figure 7 : PSRR vs Frequency $(I_{LOAD} max - V_{IN} min)$

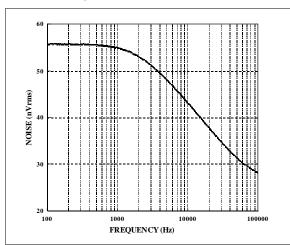


Figure 4: Settling Time

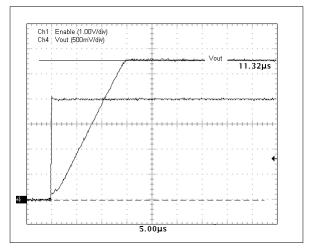


Figure 6 : Load Transient (falling edge)

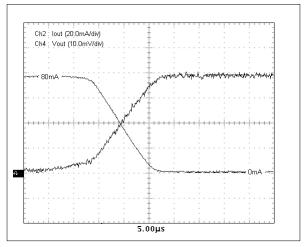
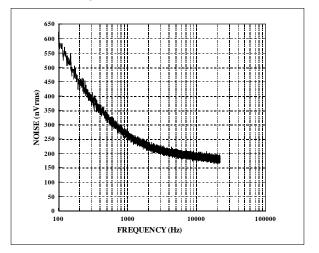
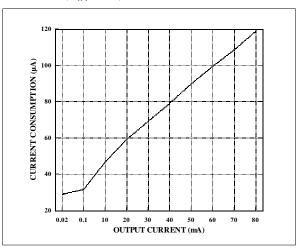




Figure 8 : Noise vs Frequency $(I_{LOAD} max - V_{IN} min)$

47/

Figure 9 : Current Consumption vs Output Current $(V_{IN} = 4V)$

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 2002 STMicroelectronics - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States

http://www.st.com