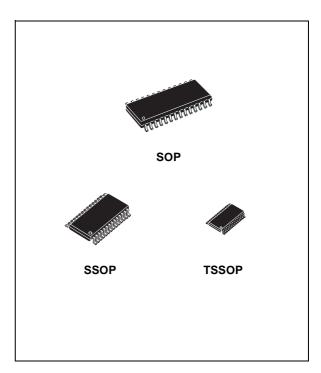


3 TO 5.5V, 400KBPS, RS-232 TRANSCEIVER WITH AUTO-POWERDOWN

- 1μA SUPPLY CURRENT ACHIEVED WHEN IN AUTO-POWERDOWN
- 250Kbps MINIMUM GUARANTEED DATA RATE
- GUARANTEED 6V/us SLEW RATE RANGE
- GUARANTEED MOUSE DRIVEABILITY
- 0.1µF EXTERNAL CAPACITORS
- MEET EIA/TIA-232 SPECIFICATIONS DOWN TO 3V
- AVAILABLE IN SO-28, SSOP-28 AND TSSOP28


DESCRIPTION

The ST3243 device consists of 3 drivers, 5 receivers and a dual charge-pump circuit. The device meets the requirements of EIA/TIA and V.28/V.24 comunication standards providing high data rate capability.

The receiver R2 is always active to implement a wake-up feature for serial port.

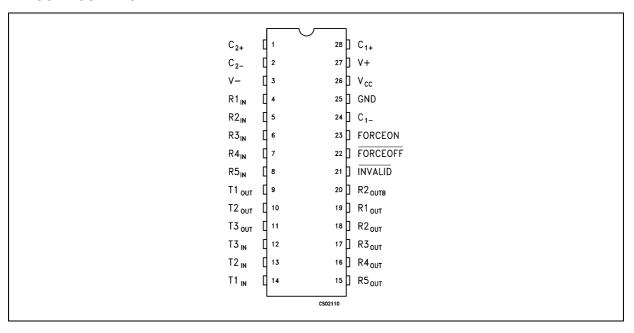
The ST3243 has a proprietary low-dropout transmitter output stage enabling true RS-232 performance from a 3.0V to 5.5V supply with a dual charge pump. The device is guaranteed to run at data rates of 250kbps while maintaining RS-232 output levels.

The Auto-powerdown feature functions when FORCEON is low and FORCEOFF is high. During this mode of operation, if the device does not sense a valid RS-232 signal, the driver outputs are disabled. If FORCEOFF is set low, both drivers and receivers (expert R2B) are shut off, and supply current is reduced to 1mA. Disconnecting

the serial port or turning off the peripheral drives causes the auto-powerdown condition to occur. Auto-powerdown can be disabled when FORCEON and FORCEOFF are high, and should be done when driving a serial mouse. With Auto-powerdown enabled, the device is activated automatically when a valid signal is applied to any receiver input.

Typical application are in notebook, subnotebook, palmtop computers, battery-powered equipment, hand-held equipment, peripherals and printers.

May 2002 1/11


ORDERING CODES

Туре	Temperature Range	Package	Comments
ST3243CD	0 to 70 °C	SO-28 (Tube)	27parts per tube / 12tube per box
ST3243BD	-40 to 85 °C	SO-28 (Tube)	27parts per tube / 12tube per box
ST3243CDR	0 to 70 °C	SO-28 (Tape & Reel)	1000 parts per reel
ST3243BDR	-40 to 85 °C	SO-28 (Tape & Reel)	1000 parts per reel
ST3243CPR	0 to 70 °C	SSOP-28 (Tape & Reel)	1350 parts per reel
ST3243BPR	-40 to 85 °C	SSOP-28 (Tape & Reel)	1350 parts per reel
ST3243CTR	0 to 70 °C	TSSOP28 (Tape & Reel)	2500 parts per reel
ST3243BTR	-40 to 85 °C	TSSOP28 (Tape & Reel)	2500 parts per reel

PIN DESCRIPTION

PIN N°	SYMBOL	NAME AND FUNCTION
1	C ₂ +	Positive Terminal of Inverting Charge Pump Capacitor
2	C ₂ -	Negative Terminal of Inverting Charge Pump Capacitor
3	V-	-5.5V Generated by the Charge Pump
4	R1 _{IN}	First Receiver Input Voltage
5	R2 _{IN}	Second Receiver Input Voltage
6	R3 _{IN}	Third Receiver Input Voltage
7	R4 _{IN}	Fourth Receiver Input Voltage
8	R5 _{IN}	Fifth Receiver Input Voltage
9	T1 _{OUT}	First Transmitter Output Voltage
10	T2 _{OUT}	Second Transmitter Output Voltage
11	T3 _{OUT}	Third Transmitter Output Voltage
12	T3 _{IN}	Third Transmitter Input Voltage
13	T2 _{IN}	Second Transmitter Input Voltage
14	T1 _{IN}	First Transmitter Input Voltage
15	R5 _{OUT}	Fifth Receiver Output Voltage
16	R4 _{OUT}	Fourth Receiver Output Voltage
17	R3 _{OUT}	Third Receiver Output Voltage
18	R2 _{OUT}	Second Receiver Output Voltage
19	R1 _{OUT}	First Receiver Output Voltage
20	R2 _{OUTB}	Non-inverting Complementary Receiver Output, always active for wake-up
21	INVALID	Output of the valid signal detector. Indicates if a valid RS-232 level is present on receiver inputs logic "1"
22	FORCEOFF	Drive low to shut down transmitters and on-board power supply. This over-rides all automatic circuitry and FORCEON
23	FORCEON	Drive high to override automatic circuitry keeping transmitters on (FORCEOFF must be high)
24	C ₁ -	Negative Terminal of Voltage- Charge Pump Capacitor
25	GND	Ground
26	V _{CC}	Supply Voltage
27	V+	5.5V Generated by the Charge Pump
28	C ₁ +	Positive Terminal of Voltage- Charge Pump Capacitor

PIN CONFIGURATION

TRUTH TABLE

FORCE OFF	T _{OUT}	R _{OUT}	R _{2OUTB}
0	HIGH Z	HIGH Z	ACTIVE *
1	ACTIVE *	ACTIVE *	ACTIVE *

^{*}If the part is in auto-powerdown mode (FORCE OFF = V_{CC}, FORCE ON = GND) it is shutdown , if no valid RS-232 levels are present on all receiver input

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	-0.3 to 6	V
V+	Doubled Voltage Terminal	(V _{CC} -0.3) to 7	V
V-	Inverted Voltage Terminal	0.3 to -7	V
V+ + V-		13	V
FORCEON, FORCEOFF, T _{IN}	Input Voltage	-0.3 to 6	V
R _{IN}	Receiver Input Voltage Range	± 25	V
T _{OUT}	Transmitter Output Voltage Range	± 13.2	V
R _{OUT} R _{OUTB} INVALID	Receiver Output Voltage Range	-0.3 to (V _{CC} + 0.3)	V
t _{SHORT}	Short Circuit Duration on T _{OUT} (one at a time)	Continuous	
T _{stg}	Storage Temperature Range	-65 to 150	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied. V+ and V- can have a maximum magnitude of +7V, but their absolute addition can not exceed 13 V.

(*) The device doesn't meet 1KV ESD HBM

ELECTRICAL CHARACTERISTICS

(C₁ - C₄ = 0.1 μ F, V_{CC} = 3V to 5.5V, T_A = -40 to 85°C, unless otherwise specified. Typical values are referred to T_A = 25°C)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{ASHDN}	Supply Current Auto-powerdown	$V_{CC} = 3.3 \text{ or } 5.0 \text{V}$ $T_A = 25 ^{\circ}\text{C}$ All R_IN open FORCEOFF = V_{CC}		1	10	μΑ
I _{SHDN}	Shutdown Supply Current	$V_{CC} = 3.3 \text{ or } 5.0V$ $T_A = 25^{\circ}C$ All R_IN open FORCEOFF = GND		1	10	μΑ
I _{SHDN}	Supply Current Auto-powerdown Disabled	$V_{CC} = 3.3 \text{ or } 5.0 \text{V}$ $T_A = 25 ^{\circ}\text{C}$ FORCEON = FORCEOFF = V_{CC} No Load		0.3	1	mA

LOGIC INPUT ELECTRICAL CHARACTERISTICS

(C₁ - C₄ = 0.1 μ F, V_{CC} = 3V to 5.5V, T_A = -40 to 85°C, unless otherwise specified. Typical values are referred to T_A = 25°C)

Symbol	Parameter	Test Conditions Min.		Тур.	Max.	Unit
V _{TIL}	Input Logic Threshold Low	T-IN, FORCEON, FORCEOFF			8.0	V
V _{TIH}	Input Logic Threshold High	T-IN, FORCEON, FORCEOFF V _{CC} = 3.3V V _{CC} = 5V	2 2.4			V V
V _{THYS}	Transmitter Input Hysteresis			0.5		V
I _{IL}	Input Leakage Current	T-IN, FORCEON, FORCEOFF		± 0.01	± 1.0	μΑ
I _{OL}	Output Leakage Current	Receiver Disabled		± 0.05	± 10	μΑ
V _{OL}	Output Voltage Low	I _{OUT} = 1.6mA			0.4	V
V _{OH}	Output Voltage High	I _{OUT} = -1mA	V _{CC} -0.6	V _{CC} -0.1		V

AUTO-POWERDOWN ELECTRICAL CHARACTERISTICS

(C₁ - C₄ = 0.1μ F, V_{CC} = 3V to 5.5V, T_A = -40 to 85°C, unless otherwise specified. Typical values are referred to T_A = 25°C)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{RITE}	Receiver Input Threshold to Transmitter Enabled	Positive Threshold Negative Threshold	2.7		2.7	V V
V _{RITD}	Receiver Input Threshold to Transmitter Disabled	1μA Supply Current	-0.3		0.3	V
V _{IOL}	INVALID Output Voltage LOW				0.4	V
V _{IOH}	INVALID Output Voltage HIGH		V _{CC} -0.6			V
t _{WU}	Receiver Threshold to Transmitter Enabled	I _{OUT} = 1.6mA		250		μs
t _{invh}	Receiver Positive or Negative Threshold to INVALID HIGH	I _{OUT} = -1mA		1		μs
t _{invL}	Receiver Positive or Negative Threshold to INVALID LOW			30		μѕ

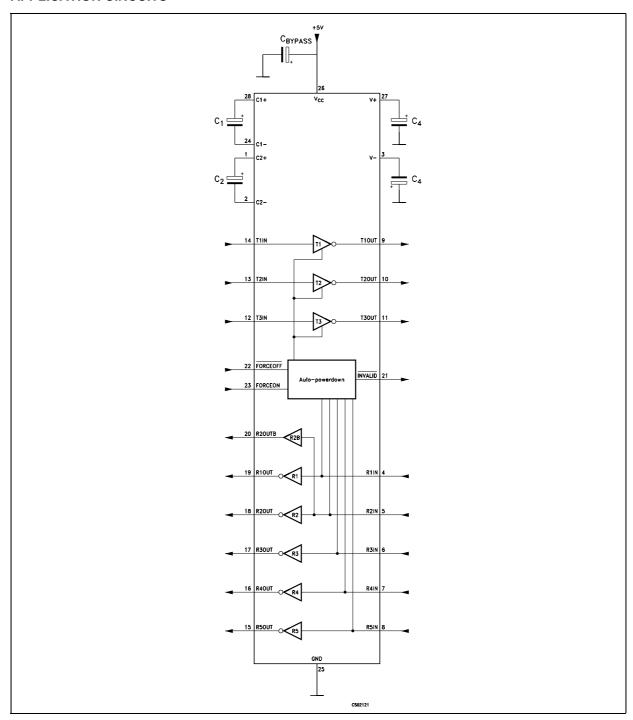
TRANSMITTER ELECTRICAL CHARACTERISTICS

 $(C_1$ - C_4 = 0.1 $\mu F,~V_{CC}$ = 3V to 5.5V, T_A = -40 to 85°C, unless otherwise specified. Typical values are referred to T_A = 25°C)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{TOUT}	Output Voltage Swing	All Transmitter outputs are loaded with $3K\Omega$ to GND	± 5	± 5.4		V
R _{OUT}	Output Resistance	$V_{CC} = V + = V - = 0V$ $V_{OUT} = \pm 2V$	300	10M		Ω
I _{SC}	Output Short Circuit Current			± 35	± 60	mA
V _{OT}	Transmitter Output Voltage	T1IN = T2IN = GND, T3IN = V_{CC} T3OUT loaded with 3K Ω to GND	± 5			V
		T1OUT and T2OUT loaded with 2.5mA each				

RECEIVER ELECTRICAL CHARACTERISTICS

(C₁ - C₄ = 0.1 μ F, V_{CC} = 3V to 5.5V, T_A = -40 to 85°C, unless otherwise specified. Typical values are referred to T_A = 25°C)


Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{RIN}	Receiver Input Voltage Operating Range		-25		25	V
V _{RIL}	RS-232 Input Threshold Low	$T_A = 25^{\circ}C$ $V_{CC} = 3.3V$ $T_A = 25^{\circ}C$ $V_{CC} = 5.0V$	0.6 0.8	1.2 1.2		V
V _{RIH}	RS-232 Input Threshold High	$T_A = 25^{\circ}C$ $V_{CC} = 3.3V$ $T_A = 25^{\circ}C$ $V_{CC} = 5.0V$		1.5 1.8	2.4 2.4	V
V _{RIHYS}	Input Hysteresis			0.5		V
R _{RIN}	Input Resistance	T _A = 25°C	3	5	7	KΩ

TIMING CHARACTERISTICS

(C₁ - C₄ = 0.1 μ F, V_{CC} = 3V to 5.5V, T_A = -40 to 85°C, unless otherwise specified. Typical values are referred to T_A = 25°C)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
D _R	Maximum Data Rate	$R_L = 3K\Omega$ $C_L = 1000pF$ one trasmitter switching	250	400		Kbps
t _{PHL} t _{PLH}	Receiver Propagation Delay	R_{IN} to R_{OUT} $C_L = 150pF$		0.15		μs
t _{T_SKEW}	Transmitter Skew			100		ns
t _{R_SKEW}	Receiver Skew			50		ns
t _{INVH}	Receiver Positive or negative Threshold to INVALID HIGH			1		μs
t _{INVL}	Receiver Positive or negative Threshold to INVALID LOW			30		μs
S _{RT}	Transition Slew Rate	$T_A = 25$ °C $R_L = 3$ K to 7 K Ω $V_{CC} = 3.3$ V				
		measured from +3V to -3V or -3V to +3V $C_L = 150pF$ to $1000pF$ $C_L = 150pF$ to $2500pF$	6 4		30 30	V/μs V/μs

APPLICATION CIRCUITS

CAPACITANCE VALUE (μ F)

V _{cc}	C1	C2	C3	C4	Cbypass
3.0 to 3.6	0.1	0.1	0.1	0.1	0.1
4.5 to 5.5	0.047	0.33	0.33	0.33	0.33
3.0 to 5.5	0.22	1.0	1.0	1.0	0.22

TYPICAL PERFORMANCE CHARACTERISTICS (unless otherwise specified $T_i = 25$ °C)

Figure 1: INVALID HIGH Threshold Time

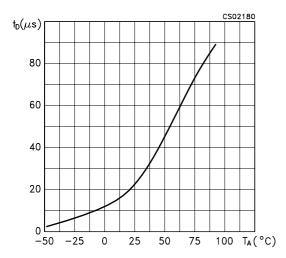


Figure 2: INVALID LOW Threshold Time

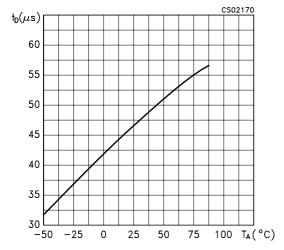
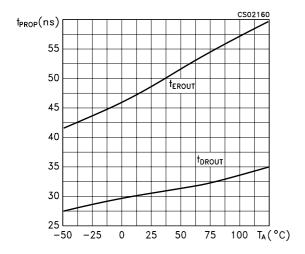



Figure 3: Receiver Propagation Delay

Figure 4 : TReceiver Output Enable & Disable Time

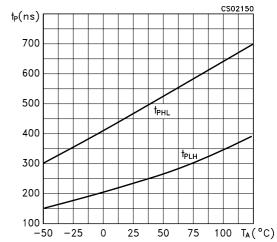
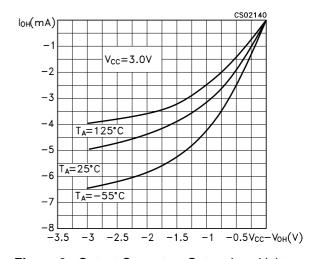
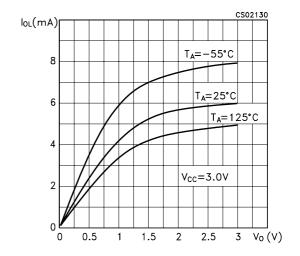
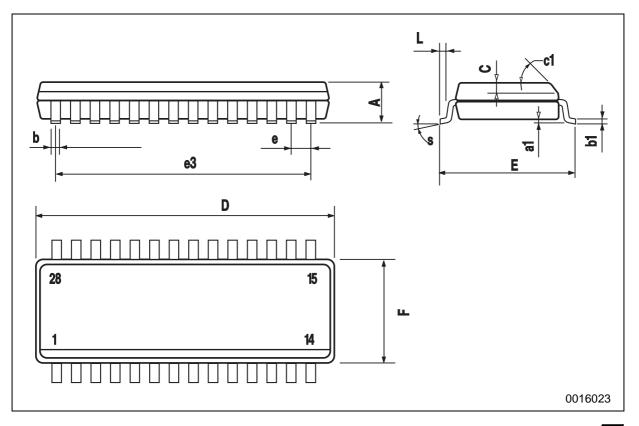
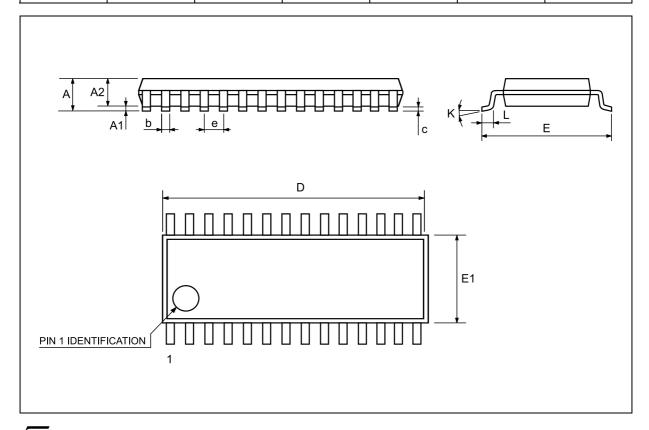


Figure 5 : Output Current vs Output High Voltage

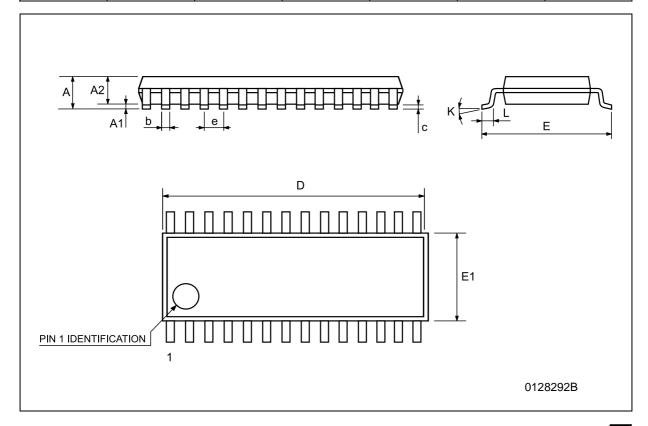




Figure 6 : Output Current vs Output Low Voltage

4


SO-28 MECHANICAL DATA

DIM.		mm.			inch			
DIIVI.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.		
А			2.65			0.104		
a1	0.1		0.3	0.004		0.012		
b	0.35		0.49	0.014		0.019		
b1	0.23		0.32	0.009		0.012		
С		0.5			0.020			
c1			45°	(typ.)				
D	17.70		18.10	0.697		0.713		
E	10.00		10.65	0.393		0.419		
е		1.27			0.050			
e3		16.51			0.650			
F	7.40		7.60	0.291		0.300		
L	0.50		1.27	0.020		0.050		
S			8° (r	nax.)	•	•		


SSOP28 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А			2			0.079
A1	0.050			0.002		
A2	1.65	1.75	1.85	0.065	0.069	0.073
b	0.22		0.38	0.009		0.015
С	0.09		0.25	0.004		0.010
D	9.9	10.2	10.5	0.390	0.402	0.413
E	7.4	7.8	8.2	0.291	0.307	0.323
E1	5	5.3	5.6	0.197	0.209	0.220
е		0.65 BSC			0.0256 BSC	
K	0°		10°	0°		10°
L	0.55	0.75	0.95	0.022	0.030	0.037

TSSOP28 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А			1.2			0.047
A1	0.05		0.15	0.002	0.004	0.006
A2	0.8	1	1.05	0.031	0.039	0.041
b	0.19		0.30	0.007		0.012
С	0.09		0.20	0.004		0.0089
D	9.6	9.7	9.8	0.378	0.382	0.386
E	6.2	6.4	6.6	0.244	0.252	0.260
E1	4.3	4.4	4.48	0.169	0.173	0.176
е		0.65 BSC			0.0256 BSC	
К	0°		8°	0°		8°
L	0.45	0.60	0.75	0.018	0.024	0.030

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2002 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

© http://www.st.com

