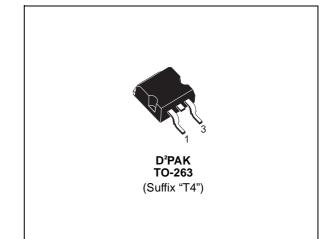
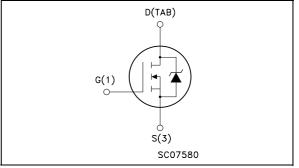


N-CHANNEL 24V - 0.0052 Ω - 60A D²PAK STripFET™ III POWER MOSFET

TYPE	V _{DSS}	R _{DS(on)}	ID
STB100NH02L	24 V	< 0.006 Ω	60 A (2)


- TYPICAL R_{DS}(on) = 0.0052 Ω @ 10 V
- TYPICAL $R_{DS}(on) = 0.007 \ \Omega @ 5 V$
- R_{DS(ON)} * Qg INDUSTRY's BENCHMARK
- CONDUCTION LOSSES REDUCED
- SWITCHING LOSSES REDUCED
- LOW THRESHOLD DEVICE
- SURFACE-MOUNTING D²PAK (TO-263)
 POWER PACKAGE IN TUBE (NO SUFFIX) OR
 IN TAPE & REEL (SUFFIX "T4")

DESCRIPTION


The STB100NH02L utilizes the latest advanced design rules of ST's proprietary STripFET[™] technology. This is suitable fot the most demanding DC-DC converter applications where high efficiency is to be achieved.

APPLICATIONS

 SPECIFICALLY DESIGNED AND OPTIMISED FOR HIGH EFFICIENCY DC/DC CONVERTERS

INTERNAL SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol Parameter		Value	Unit
V _{spike(1)}	Drain-source Voltage Rating	30	V
V _{DS}	Drain-source Voltage (V _{GS} = 0)	24	V
Vdgr	Drain-gate Voltage (R_{GS} = 20 k Ω)	24	V
V_{GS}	Gate- source Voltage	± 20	V
I _D (2)	Drain Current (continuous) at T _C = 25°C	60	A
I _D (2)	Drain Current (continuous) at T _C = 100°C	60	A
I _{DM} (3)	Drain Current (pulsed)	240	A
P _{tot}	Total Dissipation at $T_C = 25^{\circ}C$	100	W
	Derating Factor	0.67	W/°C
E _{AS} (4)	Single Pulse Avalanche Energy	600	mJ
T _{stg} Storage Temperature		55 to 175	°C
T _i Max. Operating Junction Temperature		-55 to 175	

September 2003

THERMAL DATA

Rthj-case Rthj-amb	Thermal Resistance Junction-case Thermal Resistance Junction-ambient Maximum Lead Temperature For Soldering Purpose	Max Max	1.5 62.5 300	°C/W °C/W
11	Maximum Leau Temperature For Soldening Purpose		300	C

ELECTRICAL CHARACTERISTICS (T_{CASE} = 25 °C UNLESS OTHERWISE SPECIFIED) OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	I _D = 25 mA, V _{GS} = 0	24			V
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	$V_{DS} = 20 V$ $V_{DS} = 20 V$ $T_{C} = 125^{\circ}C$			1 10	μΑ μΑ
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	$V_{GS} = \pm 20 V$			±100	nA

ON (5)

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$	I _D = 250 μA	1	1.8		V
R _{DS(on)}	Static Drain-source On Resistance				0.0052 0.007	0.006 0.011	Ω Ω

DYNAMIC

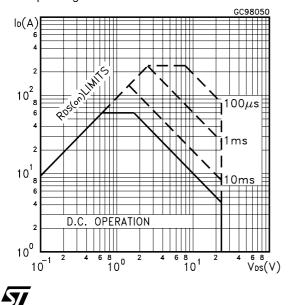
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} ⁽⁵⁾	Forward Transconductance	V _{DS} = 10 V I _D = 30 A		40		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	V_{DS} = 15V f = 1 MHz V_{GS} = 0		2850 800 120		pF pF pF
R _G	Gate Input Resistance	f=1 MHz Gate DC Bias=0 Test Signal Level =20 mV Open Drain		1		Ω

ELECTRICAL CHARACTERISTICS (continued)

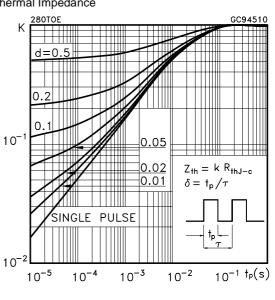
SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on Delay Time Rise Time			13 75		ns ns
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	V _{DD} =10 V I _D =60 A V _{GS} =10 V		47.5 10 7	64	nC nC nC

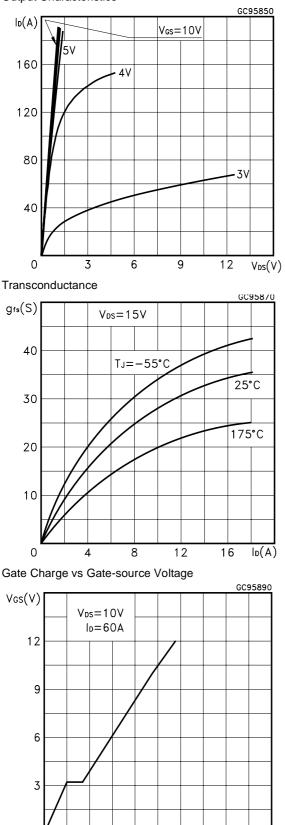
SWITCHING OFF

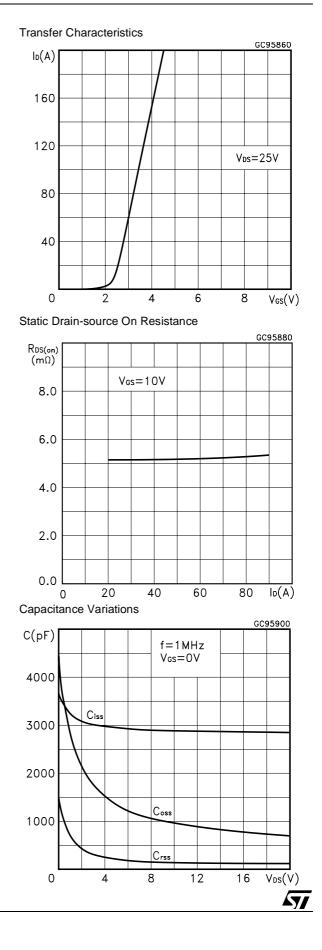

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(off)} t _f	Turn-off Delay Time Fall Time	$ \begin{array}{ll} V_{DD} = 10 \ V & I_D = 30 \ A \\ R_G = 4.7 \Omega, & V_{GS} = 10 \ V \\ (\text{Resistive Load, Figure 3}) \end{array} $		50 18	24.3	ns ns

SOURCE DRAIN DIODE


Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM}	Source-drain Current Source-drain Current (pulsed)				60 240	A A
V _{SD} ⁽⁵⁾	Forward On Voltage	$I_{SD} = 30 \text{ A}$ $V_{GS} = 0$			1.3	V
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$ I_{SD} = 60 \mbox{ A} \qquad \mbox{di/dt} = 100 \mbox{A/} \mu \mbox{s} \\ V_{DD} = 16 \mbox{ V} \qquad \mbox{T}_j = 150^{\circ} \mbox{C} \\ (\mbox{see test circuit, Figure 5}) $		35 35 2		ns nC A

 $^{(5)}$ Pulsed: Pulse duration = 300 µs, duty cycle 1.5 %. $^{(6)}$ Q_{oss} = C_{oss}* Δ V_{in} , C_{oss} = C_{gd} + C_{ds} . See Appendix A $^{(7)}$ Gate charge for synchronous operation

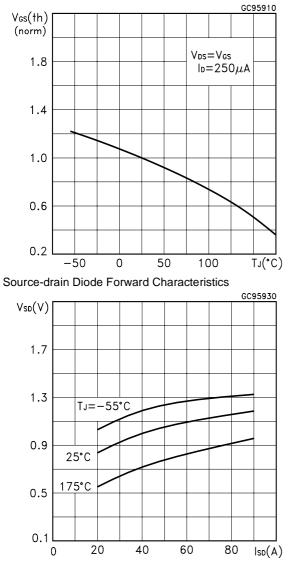

Safe Operating Area



Thermal Impedance

Output Characteristics

0

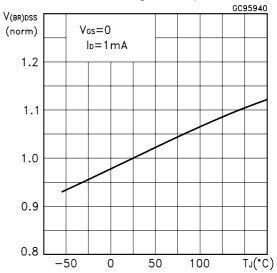

20

40

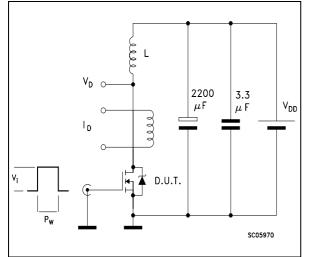
60

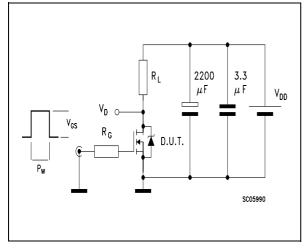
80

Q₀(nC)



Normalized Gate Threshold Voltage vs Temperature


Ros(on) (norm) 1.6 1.4 1.2 1.0 0.8 -50 0 50 100 TJ(°C)


Normalized Breakdown Voltage vs Temperature.

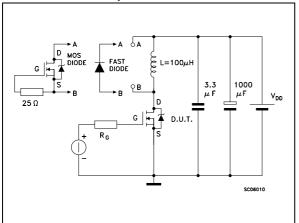

Fig. 1: Unclamped Inductive Load Test Circuit

Fig. 3: Switching Times Test Circuits For Resistive Load

Fig. 5: Test Circuit For Inductive Load Switching And Diode Recovery Times

Fig. 2: Unclamped Inductive Waveform

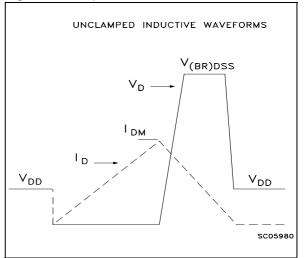
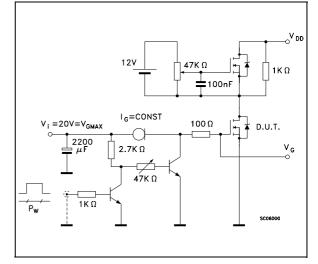
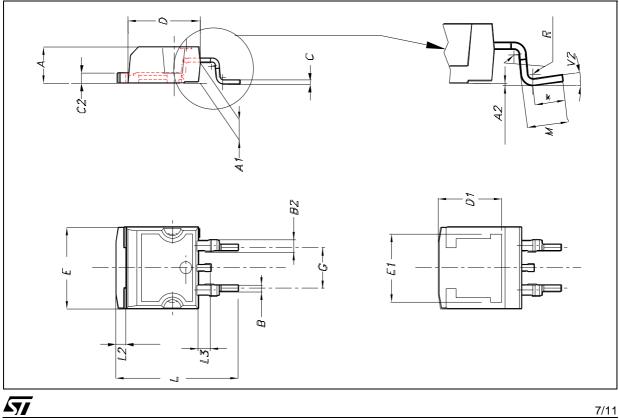
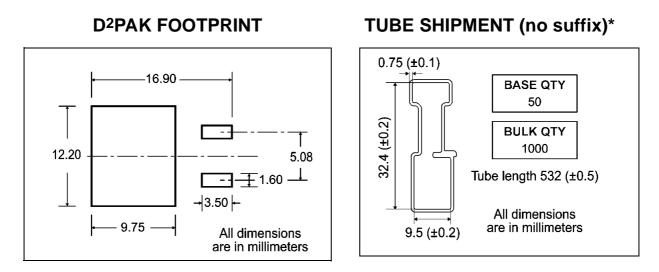
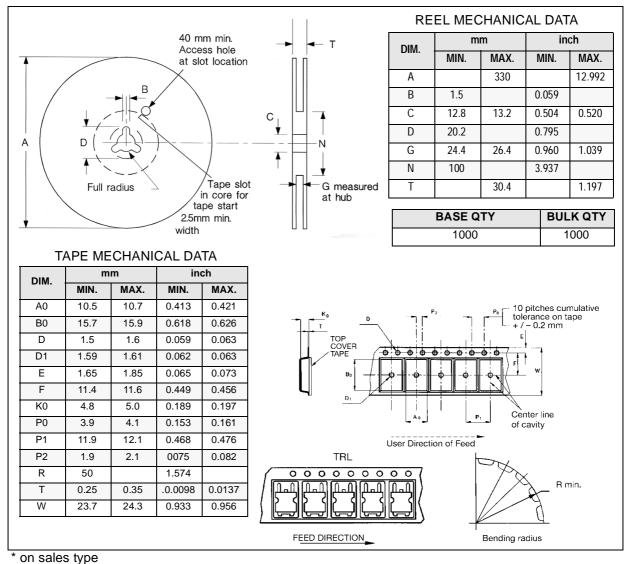
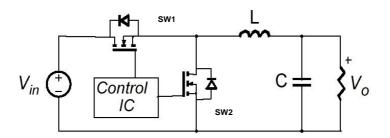




Fig. 4: Gate Charge test Circuit



Γ


		D ² PA	K MECHANIC	AL DATA		
DIM.		mm.			inch.	
	MIN.	TYP.	MAX.	MIN.	TYP.	TYP.
Α	4.4		4.6	0.173		0.181
A1	2.49		2.69	0.098		0.106
A2	0.03		0.23	0.001		0.009
В	0.7		0.93	0.028		0.037
B2	1.14		1.7	0.045		0.067
С	0.45		0.6	0.018		0.024
C2	1.21		1.36	0.048		0.054
D	8.95		9.35	0.352		0.368
D1		8			0.315	
E	10		10.4	0.394		0.409
E1		8.5			0.334	
G	4.88		5.28	0.192		0.208
L	15		15.85	0.591		0.624
L2	1.27		1.4	0.050		0.055
L3	1.4		1.75	0.055		0.069
М	2.4		3.2	0.094		0.126
R		0.4		1	0.015	
V2	0°		4°	0°		4°


7/11

TAPE AND REEL SHIPMENT (suffix "T4")*

APPENDIX A Buck Converter: Power Losses Estimation

The power losses associated with the FETs in a Synchronous Buck converter can be estimated using the equations shown in the table below. The formulas give a good approximation, for the sake of performance comparison, of how different pairs of devices affect the converter efficiency. However a very important parameter, the working temperature, is not considered. The real device behavior is really dependent on how the heat generated inside the devices is **e**moved to allow for a safer working junction temperature.

The low side (SW2) device requires:

- Very low R_{DS(on)} to reduce conduction losses
- Small Q_{gls} to reduce the gate charge losses
- Small C_{oss} to reduce losses due to output capacitance
- Small Q_{rr} to reduce losses on SW₁ during its turn-on
- The C_{gd}/C_{gs} ratio lower than V_{th}/V_{gg} ratio especially with low drain to source voltage to avoid the cross conduction phenomenon;

The high side (SW1) device requires:

- Small R_g and L_s to allow higher gate current peak and to limit the voltage feedback on the gate
- Small Qg to have a faster commutation and to reduce gate charge losses
- Low R_{DS(on)} to reduce the conduction losses.

A7/

		High Side Switch (SW1)	Low Side Switch (SW2)
Pconduct	ion	$R_{\rm DS(on)SW1}*I_L^2*d$	$R_{DS(on)SW2} * I_L^2 * (1-d)$
Pswitching		$V_{in} * (Q_{gsth(SW1)} + Q_{gd(SW1)}) * f * \frac{I_L}{I_g}$	Zero Voltage Switching
P _{diode}	Recovery	Not Applicable	$^{1}V_{in} * Q_{rr(SW2)} * f$
	Conduction	Not Applicable	$V_{\rm f(SW2)} * I_{\rm L} * t_{\rm deadtime} * f$
Pgate(Q _G)	$Q_{g(SW1)} * V_{gg} * f$	$\mathbf{Q}_{\mathbf{gls}(\mathrm{SW2})} * \mathbf{V}_{\mathbf{gg}} * \mathbf{f}$
P _{Qoss}		$\frac{V_{in} * Q_{oss(SW1)} * f}{2}$	$\frac{V_{in} * Q_{oss(SW2)} * f}{2}$

Parameter	Meaning
d	Duty-cycle
Qgsth	Post threshold gate charge
Q _{gls}	Third quadrant gate charge
Pconduction	On state losses
Pswitching	On-off transition losses
Pdiode	Conduction and reverse recovery diode losses
Pgate	Gate drive losses
PQoss	Output capacitance losses

¹ Dissipated by SW1 during turn-on

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

All other names are the property of their respective owners.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco -Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com