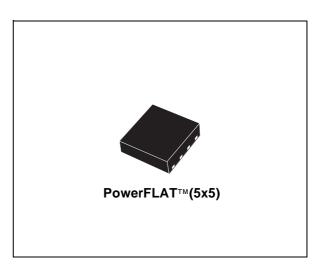
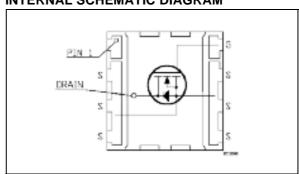


STL22NF10

N-CHANNEL 100V - 0.055 Ω - 22A PowerFLAT™ LOW GATE CHARGE STripFET™ II MOSFET

TYPE	V _{DSS}	R _{DS(on)}	I _D
STL22NF10	100 V	<0.060 Ω	22 A(1)


- TYPICAL $R_{DS}(on) = 0.055 \Omega$
- IMPROVED DIE-TO-FOOTPRINT RATIO
- VERY LOW PROFILE PACKAGE (1mm MAX)
- VERY LOW THERMAL RESISTANCE
- VERY LOW GATE CHARGE


This application specific Power MOSFET is the second generation of STMicroelectronis unique "STripFET™" technology. The resulting transistor shows extremely low on-resistance and minimal gate charge. The new PowerFLAT™ package allows a significant reduction in board space without compromising performance.

APPLICATIONS

- HIGH-EFFICIENCY ISOLATED DC-DC CONVERTERS
- TELECOM AND AUTOMOTIVE

INTERNAL SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source Voltage (V _{GS} = 0)	100	V
V _{DGR}	Drain-gate Voltage ($R_{GS} = 20 \text{ k}\Omega$)	100	V
V _{GS}	Gate- source Voltage	± 20	V
I _D (2)	Drain Current (continuous) at T _C = 25°C (Steady State)	5.3	А
I _D (2)	Drain Current (continuous) at T _C = 100°C	3.8	А
I _{DM} (3)	Drain Current (pulsed)	22	A
P _{tot} (2)	Total Dissipation at T _C = 25°C (Steady State)	4	W
P _{tot} (1)	Total Dissipation at T _C = 25°C	70	W
	Derating Factor	0.03	W/°C
dv/dt (5)	Peak Diode Recovery voltage slope	16	V/ns
E _{AS} (6)	Single Pulse Avalanche Energy	82	mJ
T _{stg}	Storage Temperature	-55 to 150	
Tj	Operating Junction Temperature	33 10 130	°C

February 2003 1/8

STL22NF10

THERMAL DATA

Rthj-F	(*)Thermal Resistance Junction-Foot (Drain)	1.8	°C/W
Rthj-pcb(4)	Thermal Operating Junction-pcb	31.5	°C/W

^(*) Mounted on FR-4 board (t \leq 10 sec.)

ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

OFF

Symbol	Parameter	Test Conditions N		Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_D = 250 \ \mu\text{A}, \ V_{GS} = 0$	100			V
I _{DSS}	Zero Gate Voltage Drain Current (V _{GS} = 0)	$V_{DS} = Max Rating$ $V_{DS} = Max Rating T_C = 125^{\circ}C$			1 10	μA μA
Igss	Gate-body Leakage Current (V _{DS} = 0)	V _{GS} = ± 20 V			±100	nA

ON (7)

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$	I _D = 250 μA	2			V
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10 V	I _D = 11 A		0.055	0.060	Ω

DYNAMIC

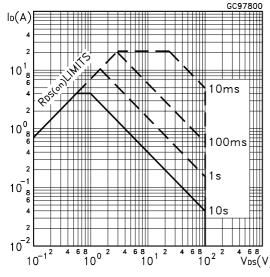
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
gfs ⁽⁷⁾	Forward Transconductance	V _{DS} = 20 V I _D = 11 A		16		S
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Capacitance	$V_{DS} = 25V$, $f = 1 MHz$, $V_{GS} = 0$		885 130 56		pF pF pF

ELECTRICAL CHARACTERISTICS (continued)

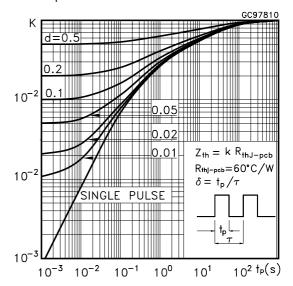
SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)} t _r	Turn-on Delay Time Rise Time	$\begin{array}{ccc} V_{DD} = 50 \text{ V} & I_D = 11 \text{ A} \\ R_G = 4.7 \ \Omega & V_{GS} = 10 \text{ V} \\ \text{(Resistive Load, Figure 3)} \end{array}$		20 45		ns ns
Q _g Q _{gs} Q _{gd}	Total Gate Charge Gate-Source Charge Gate-Drain Charge	V _{DD} = 80V I _D = 22A V _{GS} =10V		30 6 10	40	nC nC nC

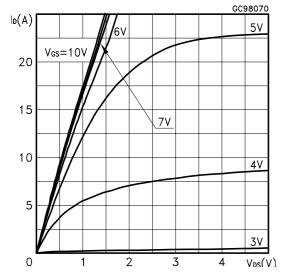
SWITCHING OFF

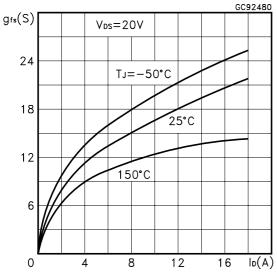

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
t _{d(off)} t _f	Turn-off Delay Time Fall Time	55	D = 11 A S = 10 V re 3)		45 10		ns ns

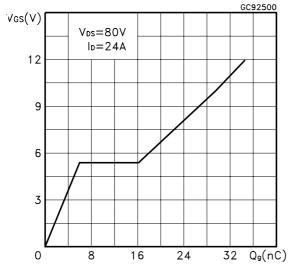
SOURCE DRAIN DIODE

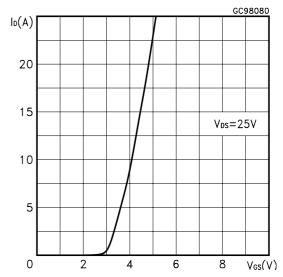

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD} I _{SDM}	Source-drain Current Source-drain Current (pulsed)				5.3 22	A A
V _{SD} (7)	Forward On Voltage	I _{SD} = 22 A V _{GS} = 0			1.3	V
t _{rr} Q _{rr} IRRM	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$\begin{split} I_{SD} = & 22 \text{ A} & \text{di/dt} = 100 \text{A/}\mu\text{s} \\ V_{DD} = & 30 \text{ V} & T_j = 150 ^{\circ}\text{C} \\ \text{(see test circuit, Figure 5)} \end{split}$		100 375 7.5		ns nC A

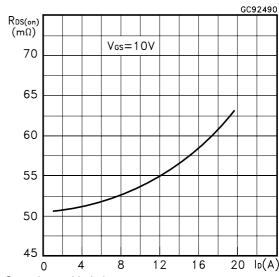
- (1) The value is rated according R_{thj-F}.
 (2) The value is rated according R_{thj-pcb}.
- (3) Pulse width limited by safe operating area.
- (4) When Mounted on FR-4 Board of 1 inch², 2 oz Cu, t<10s.
- (5) $I_{SD} \le 22A$, di/dt $\le 300A/\mu$ s, $V_{DD} \le V_{(BR)DSS}$, $T_j \le T_{JMAX}$. (6) Starting $T_j = 25$ °C, $I_D = 11$ A, $V_{DD} = 30V$. (7) Pulsed: Pulse duration = 300 μ s, duty cycle 1.5 %.

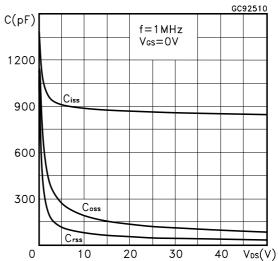

Safe Operating Area

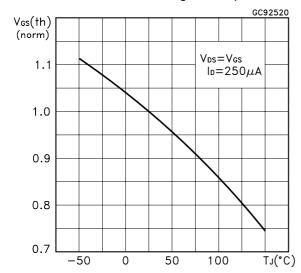

Thermal Impedance


Output Characteristics

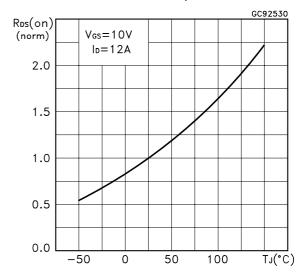

Transconductance


Gate Charge vs Gate-source Voltage


Transfer Characteristics


Static Drain-source On Resistance


Capacitance Variations


Normalized Gate Threshold Voltage vs Temperature

Source-drain Diode Forward Characteristics

Normalized on Resistance vs Temperature

Normalized Breakdown Voltage vs Temperature.

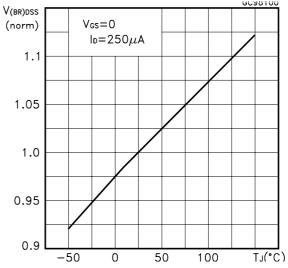


Fig. 1: Unclamped Inductive Load Test Circuit

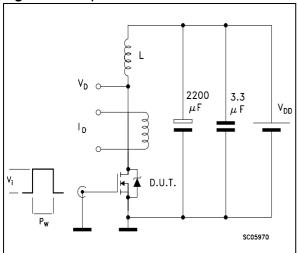
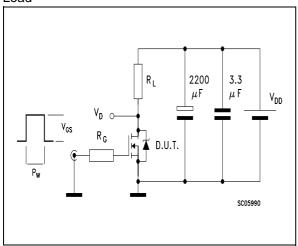



Fig. 3: Switching Times Test Circuits For Resistive Load

Fig. 5: Test Circuit For Inductive Load Switching And Diode Recovery Times

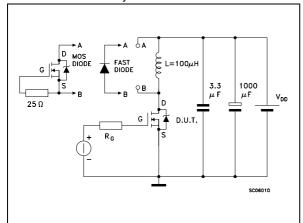


Fig. 2: Unclamped Inductive Waveform

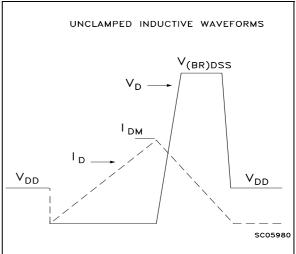
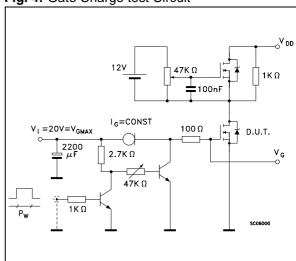
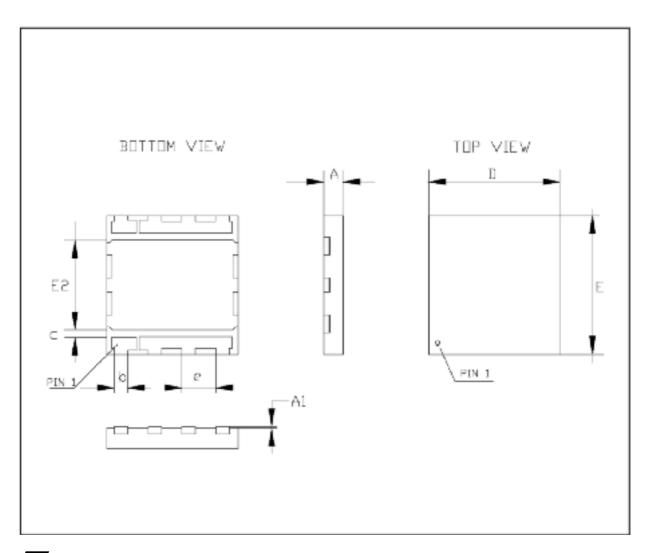




Fig. 4: Gate Charge test Circuit

PowerFLAT™ (5x5) MECHANICAL DATA

DIM.	mm.			inch		
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A		0.90	1.00		0.035	0.039
A1		0.02	0.05		0.001	0.002
b	0.43	0.51	0.58	0.017	0.020	0.023
С	0.33	0.41	0.48	0.013	0.016	0.019
D		5.00			0.197	
E		5.00			0.197	
E2	3.10	3.18	3.25	0.122	0.125	0.128
e		1.27			0.050	

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is registered trademark of STMicroelectronics ® 2003 STMicroelectronics - All Rights Reserved

All other names are the property of their respective owners.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com