74VCXH32245

LOW VOLTAGE CMOS 32-BIT BUS TRANSCEIVER (3-STATE) WITH 3.6V TOLERANTAT INPUTS AND OUTPUTS

PRELIMINARY DATA

- 3.6V TOLERANT INPUTS AND OUTPUTS
- HIGH SPEED:
$\mathrm{t}_{\mathrm{PD}}=2.5 \mathrm{~ns}$ (MAX.) at $\mathrm{V}_{\mathrm{CC}}=3.0$ to 3.6 V
$t_{P D}=3.0 n s$ (MAX.) at $\mathrm{V}_{C C}=2.3$ to 2.7 V
- POWER DOWN PROTECTION ON INPUTS AND OUTPUTS
- SYMMETRICAL OUTPUT IMPEDANCE:
$\left|\mathrm{I}_{\mathrm{OH}}\right|=\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}(\mathrm{MIN})$ at $\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$
$\left|\mathrm{I}_{\mathrm{OH}}\right|=\mathrm{I}_{\mathrm{OL}}=18 \mathrm{~mA}(\mathrm{MIN})$ at $\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$
- OPERATING VOLTAGE RANGE:
$\mathrm{V}_{\mathrm{CC}}(\mathrm{OPR})=1.65 \mathrm{~V}$ to 3.6 V
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 32245
- BUS HOLD PROVIDED ON BOTH SIDE
- LATCH-UP PERFORMANCE EXCEEDS 300mA
- ESD PERFORMANCE:

HBM > 2000V (MIL STD 883 method 3015); $M M>200 V$

DESCRIPTION

The 74VCXH32245 is a low voltage CMOS QUAD 32-BIT BUS TRANSCEIVER (3-STATE) fabricated with sub-micron silicon gate and five-layer metal wiring $\mathrm{C}^{2} \mathrm{MOS}$ technology. It is ideal for 1.65 to 3.6 V applications; it can be interfaced to 3.6 V signal enviroment for both inputs and outputs.

ORDER CODES

PACKAGE	TRAY	T \& R
LFBGA96	74VCXH32245LB	74VCXH32245LBR

This IC is intended for two-way asynchronous communication between data buses: the direction of data trasmission is determined by DIR input. Any $\overline{n G}$ contol output governs four BUS TRANSCEIVER. Output Enable input ($\overline{\mathrm{nG}})$ tied together gives full 32-bit operation. When $\overline{n G}$ is LOW, the output are on. When $\overline{\mathrm{nG}}$ is HIGH, the output are in high impedance state so that the buses are effectively isolated. Bus hold on data inputs is provided in order to eliminate the need for external pull-up or pull-down resistor.
All inputs and outputs are equipped with protection circuits against static discharge, giving them 2KV ESD immunity and transient excess voltage.

LOGIC DIAGRAM

PIN CONNECTION

TERMINAL ASSIGNMENT

	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}	\mathbf{G}	\mathbf{H}	\mathbf{J}	\mathbf{K}	\mathbf{L}	\mathbf{M}	\mathbf{N}	\mathbf{P}	\mathbf{R}	\mathbf{T}
$\mathbf{6}$	1 A 2	1 A 4	1 A 6	1 A 8	2 A 2	2 A 4	2 A 6	2 A 7	3 A 2	3 A 4	3 A 6	3 A 8	4 A 2	4 A 4	4 A 6	4 A 7
$\mathbf{5}$	1 A 1	1 A 3	1 A 5	1 A 7	2 A 1	2 A 3	2 A 5	2 A 8	3 A 1	3 A 3	3 A 5	3 A 7	4 A 1	4 A 3	A 45	4 A 8
$\mathbf{4}$	$\overline{1 G}$	GND	V_{CC}	GND	GND	V_{CC}	GND	$\overline{2 G}$	$\overline{3 G}$	GND	V_{CC}	GND	GND	V_{CC}	GND	$\overline{4 G}$
$\mathbf{3}$	1 DIR	GND	V_{CC}	GND	GND	V_{CC}	GND	2 DIR	3 DIR	GND	V_{CC}	GND	GND	V_{CC}	GND	4 DIR
$\mathbf{2}$	1 B 1	1 B 3	1 B 5	1 B 7	2 B 1	2 B 3	2 B 5	2 B 8	3 B 1	3 B 3	3 B 5	3 B 7	4 B 1	4 B 3	B 45	4 B 8
$\mathbf{1}$	1 B 2	1 B 4	1 B 6	1 B 8	2 B 2	2 B 4	2 B 6	2 B 7	3 B 2	3 B 4	3 B 6	3 B 8	4 B 2	4 B 4	4 B 6	4 B 7

INPUT AND OUTPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

SYMBOL	NAME AND FUNCTION
nDIR	Directional Control
$\mathrm{nA1}$ to $\mathrm{nA8}$	Data Inputs/Outputs
nB 1 to $\mathrm{nB8}$	Data Inputs/Outputs
$\mathrm{n} \overline{\mathrm{G}}$	Output Enable Input
GND	Ground (OV)
V_{CC}	Positive Supply Voltage

TRUTH TABLE

INPUTS		FUNCTION		OUTPUT
$\overline{\mathbf{G}}$	DIR	A BUS	B BUS	Yn
L	L	OUTPUT	INPUT	$\mathrm{A}=\mathrm{B}$
L	H	INPUT	OUTPUT	$\mathrm{B}=\mathrm{A}$
H	X	Z	Z	Z

X : Don't Care
Z: High Impedance

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	-0.5 to +4.6	V
$\mathrm{~V}_{\mathrm{I}}$	DC Input Voltage	-0.5 to +4.6	V
$\mathrm{~V}_{\mathrm{O}}$	DC Output Voltage ($\left.\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}\right)$	-0.5 to +4.6	V
$\mathrm{~V}_{\mathrm{O}}$	DC Output Voltage (High or Low State) (note 1)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
I_{IK}	DC Input Diode Current	-50	mA
I_{OK}	DC Output Diode Current (note 2)	± 50	mA
I_{O}	DC Output Current	± 50	mA
I_{CC} or $\mathrm{I}_{\mathrm{GND}}$	DC V_{CC} or Ground Current per Supply Pin	± 100	mA
P_{D}	Power Dissipation	400	mW
$\mathrm{~T}_{\text {stg }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (10 sec)	300	${ }^{\circ} \mathrm{C}$

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied

1) I_{0} absolute maximum rating must be observed
2) $V_{O}<G N D$

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage (note 1)	1.65 to 3.6	V
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage	-0 to 3.6	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage ($\left.\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}\right)$	0 to 3.6	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage (High or Low State $)$	0 to V_{CC}	V
$\mathrm{I}_{\mathrm{OH},} \mathrm{I}_{\mathrm{OL}}$	High or Low Level Output Current $\left(\mathrm{V}_{\mathrm{CC}}=3.0\right.$ to 3.6V)	± 24	mA
$\mathrm{I}_{\mathrm{OH}}, \mathrm{I}_{\mathrm{OL}}$	High or Low Level Output Current $\left(\mathrm{V}_{\mathrm{CC}}=2.3\right.$ to 2.7 V$)$	± 18	mA
$\mathrm{~T}_{\mathrm{Op}}$	Operating Temperature	-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{dt} / \mathrm{dv}$	Input Rise and Fall Time (note 2)	0 to 10	$\mathrm{~ns} / \mathrm{V}$

1) Truth Table guaranteed: 1.2 V to 3.6 V
2) V_{IN} from 0.8 V to 2 V at $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$

DC SPECIFICATIONS ($2.7 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$ unless otherwise specified)

Symbol	Parameter	Test Condition		Value		Unit
		$\begin{aligned} & \mathrm{V}_{\mathrm{Cc}} \\ & (\mathrm{~V}) \end{aligned}$		-40 to $85{ }^{\circ} \mathrm{C}$		
				Min.	Max.	
V_{IH}	High Level Input Voltage	2.7 to 3.6		2.0		V
$\mathrm{V}_{\text {IL }}$	Low Level Input Voltage	2.7 to 3.6			0.8	V
V_{OH}	High Level Output Voltage	2.7 to 3.6	$\mathrm{l}_{\mathrm{O}}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-0.2$		V
		2.7	$\mathrm{l}_{\mathrm{O}}=-12 \mathrm{~mA}$	2.2		
		3.0	$\mathrm{l}_{\mathrm{O}}=-18 \mathrm{~mA}$	2.4		
		3.0	$\mathrm{I}_{\mathrm{O}}=-24 \mathrm{~mA}$	2.2		
$\mathrm{V}_{\text {OL }}$	Low Level Output Voltage	2.7 to 3.6	$\mathrm{I}_{\mathrm{O}}=100 \mu \mathrm{~A}$		0.2	V
		2.7	$\mathrm{I}_{\mathrm{O}}=12 \mathrm{~mA}$		0.4	
		3.0	$\mathrm{I}_{\mathrm{O}}=18 \mathrm{~mA}$		0.4	
		3.0	$\mathrm{I}_{\mathrm{O}}=24 \mathrm{~mA}$		0.55	
1	Input Leakage Current	2.7 to 3.6	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND		± 5	$\mu \mathrm{A}$
$\mathrm{I}_{\text {(HOLD) }}$	Input Hold Current	3	$\mathrm{V}_{1}=0.8 \mathrm{~V}$	75		$\mu \mathrm{A}$
		3	$\mathrm{V}_{1}=2 \mathrm{~V}$	-75		
		3.6	$\mathrm{V}_{1}=0$ to 3.6 V		± 500	
I_{OZ}	High Impedance Output Leakage Current	2.7 to 3.6	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{O}}=0 \text { to } 3.6 \mathrm{~V} \end{aligned}$		± 10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {off }}$	Power Off Leakage Current	0	V_{1} or $\mathrm{V}_{\mathrm{O}}=0$ to 3.6 V		10	$\mu \mathrm{A}$
I_{CC}	Quiescent Supply Current	3.6	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND		20	$\mu \mathrm{A}$
			V_{1} or $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {CC }}$ to 3.6 V		± 20	
$\Delta_{\text {CC }}$	Icc incr. per Input	2.7 to 3.6	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$		750	$\mu \mathrm{A}$

DC SPECIFICATIONS (2.3V $<\mathrm{V}_{\mathrm{CC}} \leq 2.7 \mathrm{~V}$ unless otherwise specified)

Symbol	Parameter	Test Condition		Value		Unit
		$\begin{aligned} & V_{c c} \\ & (V) \end{aligned}$		-40 to $85{ }^{\circ} \mathrm{C}$		
				Min.	Max.	
V_{IH}	High Level Input Voltage	2.3 to 2.7		1.6		V
V_{IL}	Low Level Input Voltage	2.3 to 2.7			0.7	V
V_{OH}	High Level Output Voltage	2.3 to 2.7	$\mathrm{I}_{\mathrm{O}}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-0.2$		V
		2.3	$\mathrm{I}_{\mathrm{O}}=-6 \mathrm{~mA}$	2.0		
		2.3	$\mathrm{I}_{\mathrm{O}}=-12 \mathrm{~mA}$	1.8		
		2.3	$\mathrm{I}_{\mathrm{O}}=-18 \mathrm{~mA}$	1.7		
V_{OL}	Low Level Output Voltage	2.3 to 2.7	$\mathrm{I}_{\mathrm{O}}=100 \mu \mathrm{~A}$		0.2	V
		2.3	$\mathrm{I}_{\mathrm{O}}=12 \mathrm{~mA}$		0.4	
		2.3	$\mathrm{I}_{\mathrm{O}}=18 \mathrm{~mA}$		0.6	
I	Input Leakage Current	2.3 to 2.7	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND		± 5	$\mu \mathrm{A}$
$\mathrm{I}_{\text {(HOLD })}$	Input Hold Current	2.3	$\mathrm{V}_{1}=0.8 \mathrm{~V}$	45		$\mu \mathrm{A}$
		2.3	$\mathrm{V}_{1}=2 \mathrm{~V}$	-45		
I_{OZ}	High Impedance Output Leakage Current	2.3 to 2.7	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{O}}=0 \text { to } 5.5 \mathrm{~V} \end{aligned}$		± 10	$\mu \mathrm{A}$
$\mathrm{l}_{\text {off }}$	Power Off Leakage Current	0	V_{1} or $\mathrm{V}_{\mathrm{O}}=0$ to 3.6 V		10	$\mu \mathrm{A}$
$I_{\text {cc }}$	Quiescent Supply Current	3.6	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND		20	$\mu \mathrm{A}$
			V_{1} or $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$ to 3.6 V		± 20	

DYNAMIC SWITCHING CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$, Input $\left.\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=2.0 \mathrm{~ns}, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}\right)$

Symbol	Parameter	Test Condition		$\begin{gathered} \text { Value } \\ \hline \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{gathered}$			Unit
		V_{Cc} (V)					
				Min.	Typ.	Max.	
$\mathrm{V}_{\text {OLP }}$	Dynamic Peak Low Level Quiet Output (note 1, 3)	2.5	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}$		0.6		V
		3.3			0.8		
$\mathrm{V}_{\text {OLV }}$	Dynamic Valley Low Level Quiet Output (note 1, 3)	2.5	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}$		-0.6		V
		3.3			-0.8		
$\mathrm{V}_{\text {OHV }}$	Dynamic Valley High Level Quiet Output (note 2, 3)	2.5	$\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}$		1.9		V
		3.3			2.2		

1) Number of output defined as "n". Measured with "n-1" outputs switching from HIGH to LOW or LOW to HIGH. The remaining output is measured in the LOW state.
2) Number of outputs defined as " n ". Measured with " $n-1$ " outputs switching from HIGH to LOW or LOW to HIGH. The remaining output is measured in the HIGH state.
3) Parameters guaranteed by design.

AC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Condition				Unit
		$\begin{aligned} & V_{C C} \\ & (\mathrm{~V}) \end{aligned}$		-40 to $85{ }^{\circ} \mathrm{C}$		
				Min.	Max.	
$\mathrm{t}_{\text {PLH }} \mathrm{t}_{\text {PHL }}$	Propagation Delay Time	2.3 to 2.7		1.0	3.2	ns
		3.0 to 3.6		0.8	2.5	
$t_{\text {PZL }} \mathrm{t}_{\text {PZ }}$	Output Enable Time	2.3 to 2.7		1.0	4.9	ns
		3.0 to 3.6		0.8	3.8	
$\mathrm{t}_{\text {PLZ }} \mathrm{t}_{\text {PHZ }}$	Output Disable Time	2.3 to 2.7		1.0	4.2	ns
		3.0 to 3.6		0.8	3.7	
tosth $\mathrm{t}_{\mathrm{OSHL}}$	Output To Output Skew Time (note1, 2)	2.7 to 3.6			0.5	ns
		3.0 to 3.6			0.5	

1) Skew is defined as the absolute value of the difference between the actual propagation delay for any two outputs of the same device switching in the same direction, either HIGH or LOW ($\mathrm{t}_{\mathrm{OSLH}}=\left|\mathrm{t}_{\text {PLHm }}-\mathrm{t}_{\text {PLHn }}\right|, \mathrm{t}_{\mathrm{OSHL}}=\left|\mathrm{t}_{\text {PHLm }}-\mathrm{t}_{\text {PHLL }}\right|$
2) Parameter guaranteed by design

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Test Condition		$\begin{gathered} \text { Value } \\ \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{gathered}$			Unit
		$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & (\mathrm{~V}) \end{aligned}$					
				Min.	Typ.	Max.	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	2.5 or 3.3	$\mathrm{V}_{1}=0 \mathrm{~V}$ or V_{CC}		4		pF
$\mathrm{Cout}^{\text {O }}$	Output Capacitance	2.5 or 3.3	$\mathrm{V}_{1}=0 \mathrm{~V}$ or V_{CC}		8		pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance (note 1)	2.5 or 3.3	$\begin{gathered} \mathrm{f}_{\mathrm{IN}}=10 \mathrm{MHz} \\ \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}} \end{gathered}$		28		pF

1) $C_{P D}$ is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{C C(o p r)}=C_{P D} \times V_{C C} \times f_{I N}+I_{C C} / 16$ (per circuit)

TEST CIRCUIT

TEST	SWITCH
$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\mathrm{PHL}}$	Open
$\mathrm{t}_{\mathrm{PZL}}, \mathrm{t}_{\mathrm{PLZ}}\left(\mathrm{V}_{\mathrm{CC}}=3.0\right.$ to 3.6 V$)$	6 V
$\mathrm{t}_{\mathrm{PZL}}, \mathrm{t}_{\mathrm{PLZ}}\left(\mathrm{V}_{\mathrm{CC}}=2.3\right.$ to 2.7 V$)$	$2 \mathrm{~V}_{\mathrm{CC}}$
$\mathrm{t}_{\mathrm{PZH}}, \mathrm{t}_{\mathrm{PHZ}}$	GND

$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ or equivalent (includes jig and probe capacitance)
$R_{L}=R 1=500 \Omega$ or equivalent
$\mathrm{R}_{\mathrm{T}}=\mathrm{Z}_{\mathrm{OUT}}$ of pulse generator (typically 50Ω)
WAVEFORM SYMBOL VALUE

Symbol	V_{CC}	
	$\mathbf{3 . 0}$ to 3.6 V	$\mathbf{2 . 3}$ to 2.7 V
$\mathrm{~V}_{\mathrm{IH}}$	2.7 V	$\mathrm{~V}_{\mathrm{CC}}$
V_{M}	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{X}}$	$\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{Y}}$	$\mathrm{V}_{\mathrm{OL}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}-0.15 \mathrm{~V}$

WAVEFORM 1: PROPAGATION DELAY ($\mathrm{f}=1 \mathrm{MHz} ; 50 \%$ duty cycle)

WAVEFORM 2: OUTPUT ENABLE AND DISABLE TIME ($\mathrm{f}=1 \mathrm{MHz} ; 50 \%$ duty cycle)

LFBGA96 MECHANICAL DATA

DIM.	mm.			mils		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A	13.40		13.60	527.5		535.4
B	5.40		5.60	212.6		220.5
C			1.6			63.0
D			0.5			19.7
E		0.8			31.5	
F	0.85		0.95	33.5		37.4

6															
5															
4															
3															
2															
1		B													
A	B C	D	E	F	G	H	J J K	L	M	N	P	R	T		

$2 \bigcirc \bigcirc$
$3 \bigcirc \bigcirc$
$4 \bigcirc \bigcirc$
$5 \bigcirc \bigcirc$
$6 \bigcirc \bigcirc$
A

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
© The ST logo is a registered trademark of STMicroelectronics
© 2001 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.
© http://www.st.com

