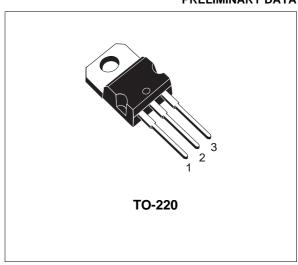


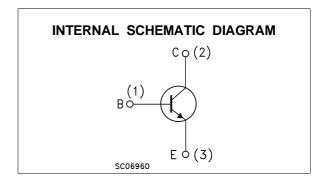
BUL1203E

HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR

PRELIMINARY DATA

- HIGH VOLTAGE CAPABILITY
- LOW SPREAD OF DYNAMIC PARAMETERS
- MINIMUM LOT-TO-LOT SPREAD FOR RELIABLE OPERATION
- VERY HIGH SWITCHING SPEED


APPLICATIONS


■ ELECTRONIC BALLASTS FOR FLUORESCENT LIGHTING (277 V HALF BRIDGE AND 120 V PUSH-PULL TOPOLOGIES)

DESCRIPTION

The BUL1203E is a new device manufactured using Diffused Collector technology to enhance switching speeds and tight hFE range while maintaining a wide RBSOA.

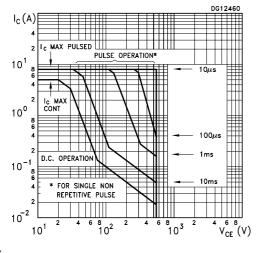
Thanks to his structure it has an intrinsic ruggedness which enables the transistor to withstand a high collector current level during Breakdown condition, without using the transil protection usually necessary in typical converters for lamp ballast.

ABSOLUTE MAXIMUM RATINGS

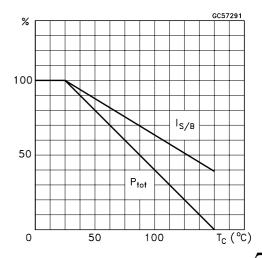
Symbol	Parameter	Value	Unit	
V _{CBO}	Collector-BaseVoltage (I _E = 0)	1200	V	
Vces	Collector-Emitter Voltage (V _{BE} = 0)	1200	V	
V _{CEO}	Collector-Emitter Voltage (I _B = 0)	550	V	
V_{EBO}	Emitter-Base Voltage (I _C = 0)	9	V	
Ic	Collector Current	5	Α	
I _{CM}	Collector Peak Current (t _p < 5 ms)	8	Α	
I_{B}	Base Current	2	Α	
I _{BM}	Base Peak Current (t _p < 5 ms)	4	Α	
P_{tot}	Total Dissipation at T _c = 25 °C	100	W	
T _{stg}	Storage Temperature	-65 to 150	°C	
T _i	Max. Operating Junction Temperature	150	°C	

June 2003 1/7

THERMAL DATA

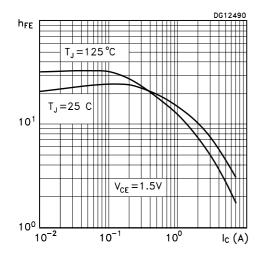

R _{thj-case} Thermal Resistance Junction-case	Max	1.25	°C/W	l
--	-----	------	------	---

ELECTRICAL CHARACTERISTICS ($T_{case} = 25$ $^{\circ}C$ unless otherwise specified)

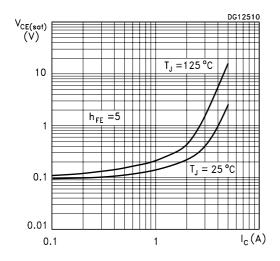

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
I _{CES}	Collector Cut-off Current (V _{BE} = 0)	V _{CE} = 1200 V				100	μА
I _{CEO}	Collector Cut-off Current (I _B = 0)	V _{CE} = 550 V				100	μΑ
V _{CEO(sus)} *	Collector-Emitter Sustaining Voltage (I _B = 0)	I _C = 100 mA	L = 25 mH	550			V
V_{EBO}	Emitter-Base Voltage (I _C = 0)	I _E = 10 mA		9			V
V _{CE(sat)*}	Collector-Emitter Saturation Voltage	I _C = 1 A I _C = 2 A I _C = 3 A	$I_B = 0.2 A$ $I_B = 0.4 A$ $I_B = 1 A$			0.5 0.7 1.5	V V V
V _{BE(sat)} *	Base-Emitter Saturation Voltage	I _C = 2 A I _C = 3 A	I _B = 0.4 A I _B = 1 A			1.5 1.5	V V
h _{FE} *	DC Current Gain	I _C = 1 mA I _C = 10 mA I _C = 0.8 A I _C = 2 A	V _{CE} = 5 V V _{CE} = 5 V V _{CE} = 3 V V _{CE} = 5 V	10 10 14 9		32 28	
t _{on} t _s t _f	RESISTIVE LOAD Turn-on Time Storage Time Fall Time	I _C = 2 A I _{B2} = -0.8 A V _{CC} = 150 V	$I_{B1} = 0.4 \text{ A}$ $tp = 30 \mu s$ (see figure 2)		2.5 0.2	0.5 3.0 0.3	μs μs μs
E _{ar}	Repetitive Avalanche Energy	$L = 2 \text{ mH}$ $V_{CC} = 50 \text{ V}$ (see figure 3)	C = 1.8 nF V _{BE} = -5 V	6			mJ

^{*} Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %

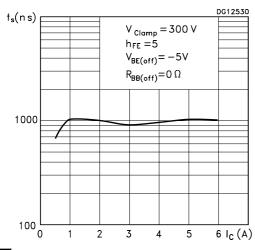
Safe Operating Area

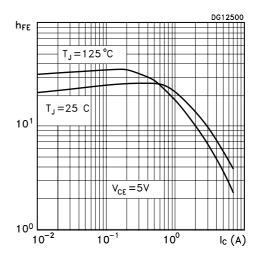


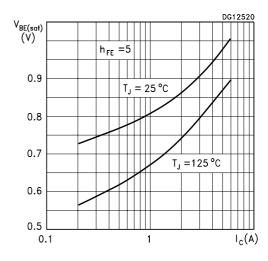
Derating Curve

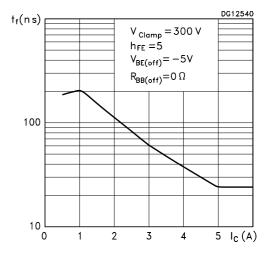


Ay/


DC Current Gain


Collector-Emitter Saturation Voltage


Inductive Load Storage Time


DC Current Gain

Base-Emitter Saturation Voltage

Inductive Load Fall Time

47/

Reverse Biased Safe Operating Area

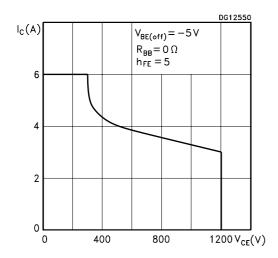


Figure 1: Inductive Load Switching Test Circuit

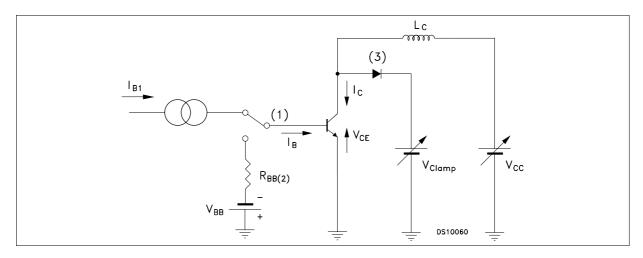
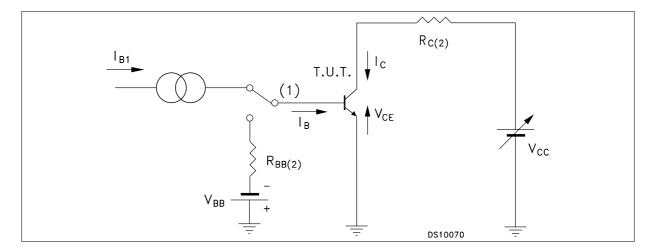
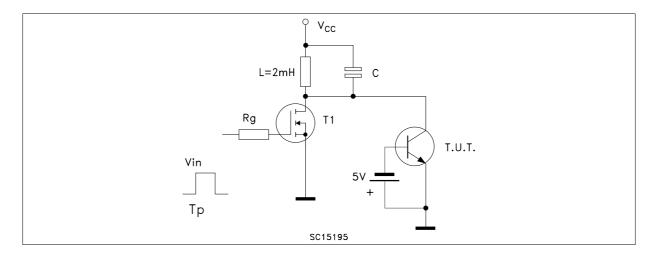




Figure 2: Resistive Load Switching Test Circuit

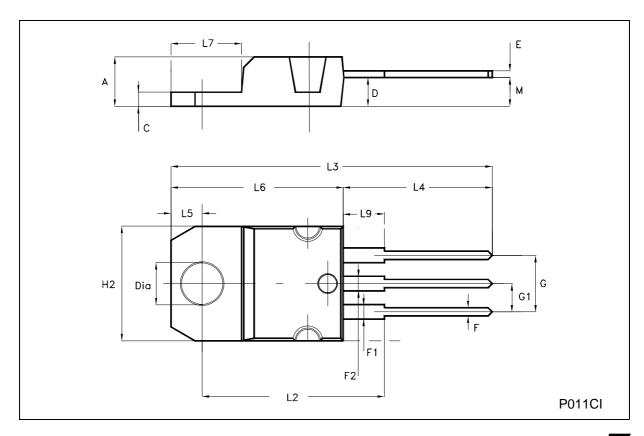

4/7

Figure 3: Energy Rating Test Circuit

TO-220 MECHANICAL DATA

DIM	mm		inch			
DIM.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
Α	4.40		4.60	0.173		0.181
С	1.23		1.32	0.048		0.052
D	2.40		2.72	0.094		0.107
E	0.49		0.70	0.019		0.027
F	0.61		0.88	0.024		0.034
F1	1.14		1.70	0.044		0.067
F2	1.14		1.70	0.044		0.067
G	4.95		5.15	0.194		0.202
G1	2.40		2.70	0.094		0.106
H2	10.00		10.40	0.394		0.409
L2		16.40			0.645	
L4	13.00		14.00	0.511		0.551
L5	2.65		2.95	0.104		0.116
L6	15.25		15.75	0.600		0.620
L7	6.20		6.60	0.244		0.260
L9	3.50		3.93	0.137		0.154
М		2.60			0.102	
DIA.	3.75		3.85	0.147		0.151

47/

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

© 2003 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

