

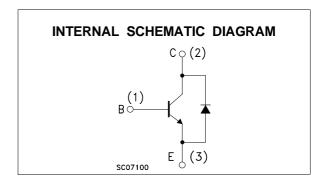
BUL1603ED

HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR

PRELIMINARY DATA

- INTEGRATED ANTISATURATION AND PROTECTION NETWORK
- INTEGRATED ANTIPARALLEL COLLECTOR EMITTER DIODE
- HIGH VOLTAGE CAPABILITY
- LOW SPREAD OF DYNAMIC PARAMETERS
- MINIMUM LOT-TO-LOT SPREAD FOR RELIABLE OPERATION
- VERY HIGH SWITCHING SPEED
- ARCING TEST SELF PROTECTED


APPLICATIONS


■ TWO LAMPS ELECTRONIC BALLAST FOR FLUORESCENT LIGHTING 277 V_{AC} IN PUSH-PULL CONFIGURATION

The BUL1603ED is a new device designed for fluorescent electronic ballast 277 V_{AC} push-pull applications.

This device can be used without baker clamp and transil protection, reducing greatly the component count.

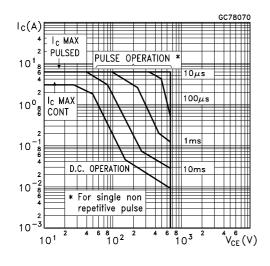
ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vces	Collector-Emitter Voltage	1600	V
	$(V_{BE} = 0; I_{CES} = 10 \text{ mA};)$		
Vces	Collector-Emitter Voltage	1550	V
	$(V_{BE} = 0; I_{CES} = 100 \mu A;)$		
V _{CEO}	Collector-Emitter Voltage (I _B = 0)	650	V
V_{EBO}	Emitter-Base Voltage (I _C = 0)	11	V
Ic	Collector Current	3	А
I _{CM}	Collector Peak Current (tp <5 ms)	6	Α
Ι _Β	Base Current	2	Α
I _{BM}	Base Peak Current (tp <5 ms)	4	А
P _{tot}	Total Dissipation at T _c = 25 °C	80	W
T _{stg}	Storage Temperature	-65 to 150	°C
Tj	Max. Operating Junction Temperature	150	°C

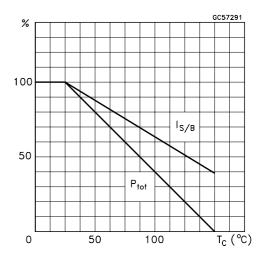
September 2002 1/6

THERMAL DATA

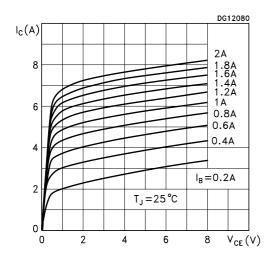
R _{thj}	j-case	Thermal Resistance Junction-Case	Max	1.56	°C/W
Rth	j-amb	Thermal Resistance Junction-Ambient	Max	62.5	°C/W

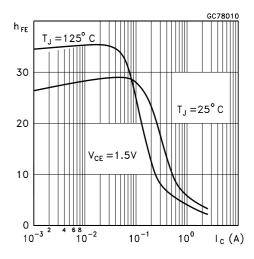

ELECTRICAL CHARACTERISTICS (T_{case} = 25 °C unless otherwise specified)

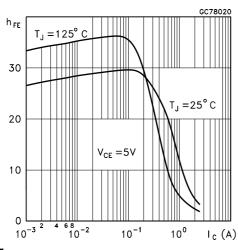
Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
I _{CES}	Collector Cut-off Current (V _{BE} = 0)	V _{CE} = 1550 V				100	μΑ
I _{EBO}	Emitter Cut-off Current (I _C = 0)	V _{EB} = 9 V				100	μΑ
V _{(BR)CES}	Collector-Emitter Breakdown Voltage (V _{BE} = 0)	I _C = 10 mA I _C = 100 μA		1600 1550			V
V _{CEO(sus)*}	Collector-Emitter Sustaining Voltage (I _B = 0)	I _C = 100 mA	L = 25 mH	650			V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage (I _C = 0)	I _E = 10 mA		11		18	V
V _{CE(sat)*}	Collector-Emitter Saturation Voltage	I _C = 1 A I _C = 0.25 A	$I_B = 0.25 A$ $I_B = 0.025 A$			1.5 1.5	V V
V _{BE(sat)} *	Base-Emitter Saturation Voltage	I _C = 1 A	I _B = 0.25 A			1.2	V
h _{FE} *	DC Current Gain	I _C = 5 mA I _C = 0.4 A I _C = 1 A	$V_{CE} = 10 \text{ V}$ $V_{CE} = 3 \text{ V}$ $V_{CE} = 1.5 \text{ V}$	18 15 4		40	
t _d t _r t _s t _f	RESISTIVE LOAD Delay Time Rise Time Storage Time Fall Time	I _C = 0.5 A I _{B1} = 0.05 A D.C. = 2% (see figure 1)	V _{CC} = 125 V I _{B2} = -0.25 A P.W. = 300 μs			0.3 0.8 1.2 0.35	μs μs μs
Ear	Repetitive Avalanche Energy	L = 2 mH $V_{CC} = 50 \text{ V}$ (see figure 2)	C = 1.8 nF V _{BE} = -5 V	6			mJ

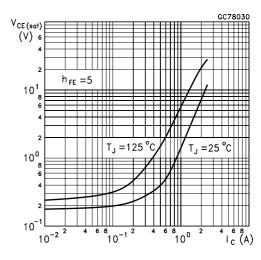

^{*} Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %

2/6


Safe Operating Area


Derating Curve


Output Characteristics


DC Current Gain

DC Current Gain

Collector Emitter Saturation Voltage

477

Base Emitter Saturation Voltage

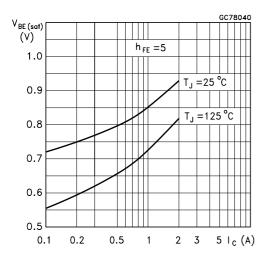
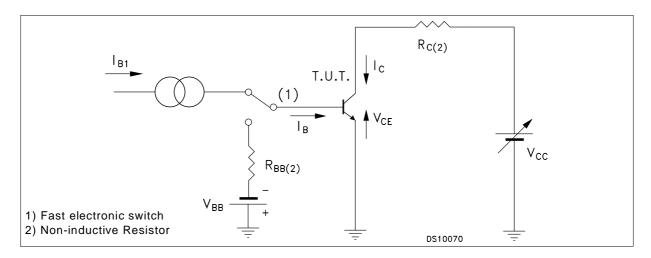
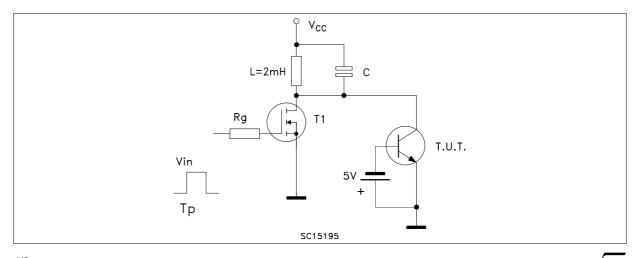
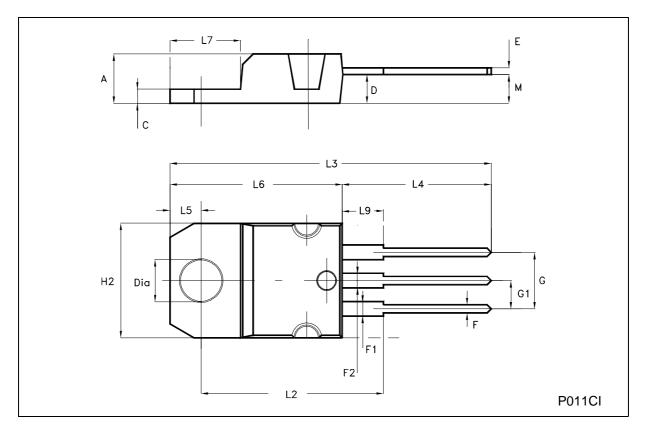


Figure 1: Resistive Load Switching Test Circuit


Figure 2: Energy Rating Test Circuit

4/6

TO-220 MECHANICAL DATA

DIM	mm			inch			
DIM.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Α	4.40		4.60	0.173		0.181	
С	1.23		1.32	0.048		0.052	
D	2.40		2.72	0.094		0.107	
E	0.49		0.70	0.019		0.027	
F	0.61		0.88	0.024		0.034	
F1	1.14		1.70	0.044		0.067	
F2	1.14		1.70	0.044		0.067	
G	4.95		5.15	0.194		0.202	
G1	2.40		2.70	0.094		0.106	
H2	10.00		10.40	0.394		0.409	
L2		16.40			0.645		
L4	13.00		14.00	0.511		0.551	
L5	2.65		2.95	0.104		0.116	
L6	15.25		15.75	0.600		0.620	
L7	6.20		6.60	0.244		0.260	
L9	3.50		3.93	0.137		0.154	
М		2.60			0.102		
DIA.	3.75		3.85	0.147		0.151	

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics

© 2002 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com

47/