

BUL312FH HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR

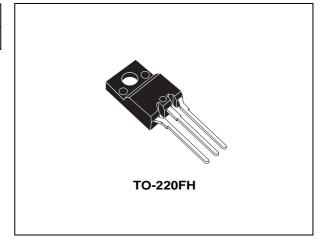
Ordering Code	Marking	Shipment
BUL312FH	BUL312FH	Tube

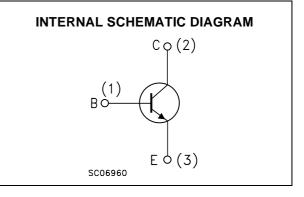
- HIGH VOLTAGE CAPABILITY
- LOW SPREAD OF DYNAMIC PARAMETERS
- MINIMUM LOT-TO-LOT SPREAD FOR RELIABLE OPERATION
- VERY HIGH SWITCHING SPEED
- FULLY CHARACTERIZED AT 125 °C
- LARGE R.B.S.O.A.
- FULLY INSULATED PACKAGE (U.L. COMPLIANT) FOR EASY MOUNTING

APPLICATIONS:

- HORIZONTAL DEFLECTION FOR COLOR TV
- SWITCH MODE POWER SUPPLIES
- ELECTRONIC BALLASTS FOR FLUORESCENT LIGHTING

DESCRIPTION


The device is manufactured using High Voltage Multi Epitaxial Planar technology for high switching speeds and high voltage capability.


It uses a Cellular Emitter structure with planar edge termination to enhance switching speeds while maintaining a wide R.B.S.O.A.

ABSOLUTE MAXIMUM RATINGS

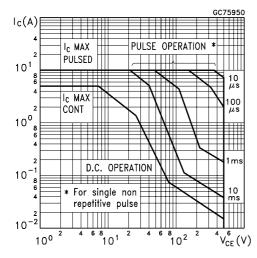
Symbol	Parameter	Value	Unit
VCES	Collector-Emitter Voltage (V _{BE} = 0)	1150	V
VCEO	Collector-Emitter Voltage (I _B = 0)	500	V
V _{EBO}	Emitter-Base Voltage (I _C = 0)	9	V
Ι _C	Collector Current	5	А
ICM	Collector Peak Current (t _p < 5 ms)	10	A
I _B	Base Current	3	А
I _{BM}	Base Peak Current (t _p < 5 ms)	4	А
P _{tot}	Total Dissipation at $T_c = 25 \text{ °C}$	36	W
V _{isol} Insulation Withstand Voltage (RMS) from All Three Leads to External Heatsink		2500	V
T _{stg}	Storage Temperature	-65 to 150	°C
Тj	Max. Operating Junction Temperature	150	°C

August 2002

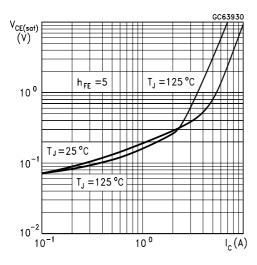
BUL312FH

THERMAL DATA

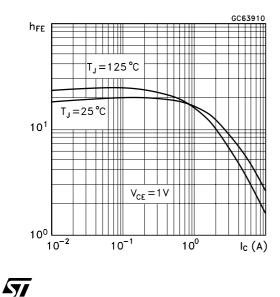
R _{thj-case}	Thermal Resistance Junction-case	Max	3.47	°C/W
R _{thj-amb}	Thermal Resistance Junction-ambient	Max	62.5	°C/W

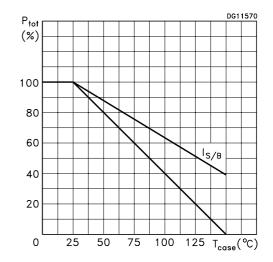

ELECTRICAL CHARACTERISTICS (T_j = 25 °C unless otherwise specified)

Symbol	Parameter	Test	Conditions	Min.	Тур.	Max.	Unit
ICES	Collector Cut-off Current (V _{BE} = 0)	V _{CE} = 1150 V V _{CE} = 1150 V	T _j = 125 °C			1 2	mA mA
I _{CEO}	Collector Cut-off Current ($I_B = 0$)	V _{CE} = 500 V				250	μΑ
V _{EBO}	Emitter-Base Voltage (I _C = 0)	I _E = 10 mA		9			V
V _{CEO(sus)} *	Collector-Emitter Sustaining Voltage $(I_B = 0)$	I _C = 100 mA		500			V
V _{CE(sat)} *	Collector-Emitter Saturation Voltage	$I_{C} = 1 A$ $I_{C} = 2 A$ $I_{C} = 3 A$	I _B = 200 mA I _B = 400 mA I _B = 600 mA			0.5 0.7 1.1	V V V
V _{BE(sat)} *	Base-Emitter Saturation Voltage	$I_{C} = 1 A$ $I_{C} = 2 A$ $I_{C} = 3 A$	I _B = 200 mA I _B = 400 mA I _B = 600 mA			1 1.1 1.2	V V V
h _{FE} *	DC Current Gain	I _C = 10 mA I _C = 3 A	V _{CE} = 5 V V _{CE} = 2.5 V	8 8		16	
t _s t _f	INDUCTIVE LOAD Storage Time Fall Time	$I_{C} = 2 A$ $I_{B1} = 400 \text{ mA}$ $L = 200 \mu H$ (See Figure 1)	$V_{clamp} = 250 V$ $V_{BE(off)} = -5 V$ $R_{BB} = 0$		1.2 80	1.9 160	µs ns
t _s t _f	INDUCTIVE LOAD Storage Time Fall Time	$I_{C} = 2 A$ $I_{B1} = 400 \text{ mA}$ $L = 200 \mu\text{H}$ $T_{j} = 125 \text{ °C}$	$V_{clamp} = 250 V$ $V_{BE(off)} = -5 V$ $R_{BB} = 0$ $(See Figure 1)$		1.8 150		µs ns

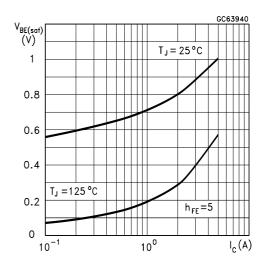

* Pulsed: Pulse duration = 300 μ s, duty cycle = 1.5 %.

57

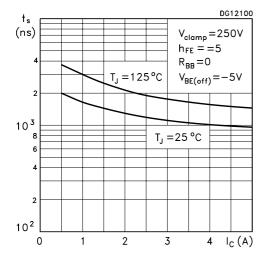

Safe Operating Area


Collector-Emitter Saturation Voltage




DC Current Gain

Derating Curve



Inductive Load Storage Time

Reverse Biased Safe Operating Area

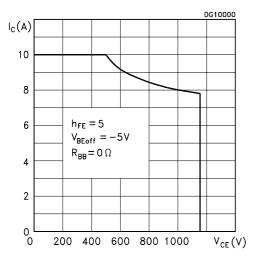
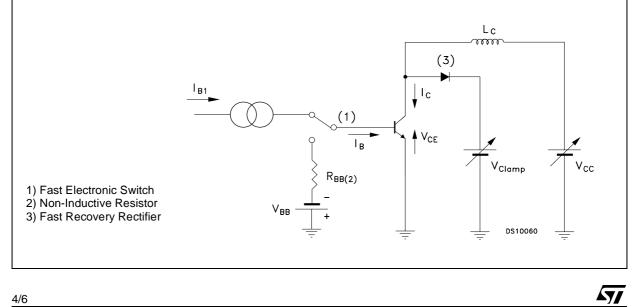
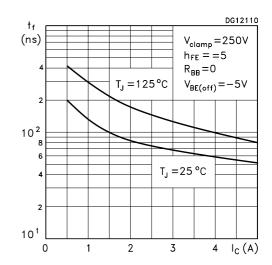
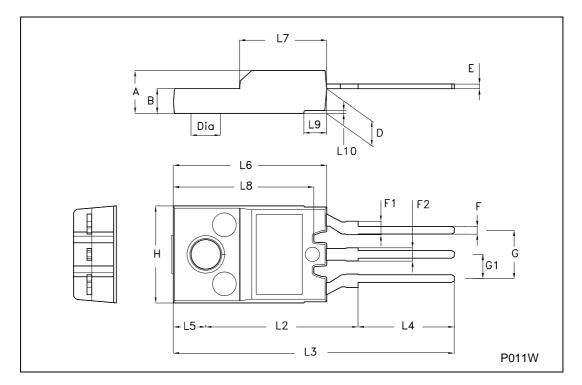




Figure 1: Inductive Load Switching Test Circuit



Inductive Load Fall Time

DIM.	mm			inch		
Dilvi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А	4.4		4.6	0.173		0.181
В	2.5		2.7	0.098		0.106
D	2.5		2.75	0.098		0.108
Е	0.45		0.7	0.017		0.027
F	0.75		1	0.030		0.039
F1	1.3		1.8	0.051		0.070
F2	1.3		1.8	0.051		0.070
G	4.95		5.2	0.195		0.204
G1	2.4		2.7	0.094		0.106
Н	10		10.4	0.393		0.409
L2		16			0.630	
L3	28.6		30.6	1.126		1.204
L4	9.8		10.6	0.385		0.417
L5		3.4			0.134	
L6	15.9		16.4	0.626		0.645
L7	9		9.3	0.354		0.366
L8	14.5		15	0.570		0.590

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patents of other rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2002 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. © http://www.st.com

57