

DB-900-100W

100W / 26V / 869-894 MHz PA using 2x PD57060S The *LdmoST* FAMILY

PRELIMINARY DATA

RF POWER AMPLIFIER DEMOBOARD USING TWO N-CHANNEL ENHANCEMENT-MODE LATERAL MOSFETs

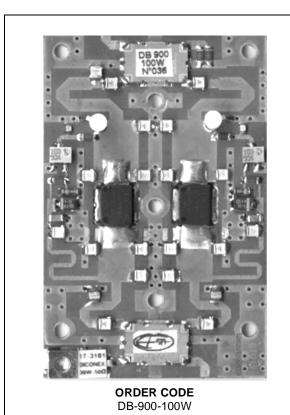
- EXCELLENT THERMAL STABILITY
- COMMON SOURCE CONFIGURATION
- P_{OUT} = 100 W min. with 13 dB gain over 869-894 MHz
- 10:1 LOAD VSWR CAPABILITY
- BeO FREE AMPLIFIER

TYPICAL CDMA PERFORMANCE:

IS-95 CDMA / 9ch FWD

Pout = 20W

Gain = 13 dB


Nd = 22%

ACPR (750 KHz) : -45 dBc ACPR (1.98 MHz) : -60 dBc

DESCRIPTION

The DB-900-100W is a common source N-Channel enhancement-mode lateral Field-Effect RF power amplifier designed for IS-54/-136 & IS-95 base station applications.

The DB-900-100W is designed in cooperation with Europeenne de Telecomunications S.A. (www.etsa.rf), for high gain and broadband performance operating in common source mode at 26 V, capable of withstanding load mismatch up to 10:1 all phases and with harmonics lower than 30 dBc.

MECH. SPECIFICATION L=80 mm W=50 mm H=10 mm

ABSOLUTE MAXIMUM RATINGS ($T_{CASE} = 25^{\circ}C$)

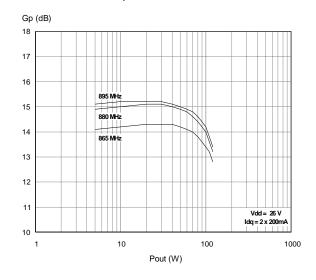
Symbol	Parameter	Value	Unit
V _{DD}	Supply voltage	32	V
I _D	Drain Current	12	А
P _{DISS}	Power dissipation at Tcase = +85°C	145	W
T _{CASE}	Operating Case Temperature	-20 to +85	°C
P _{amb}	Max. Ambient Temperature	+55	°C

November, 20 2002 1/6

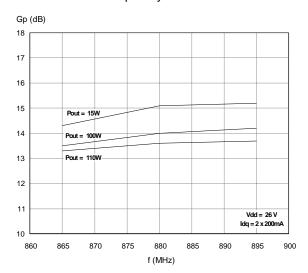
DB-900-100W

ELECTRICAL SPECIFICATION ($T_{amb} = +25^{\circ}C$, Vdd = 26V, ldq = 2 x 200 mA)

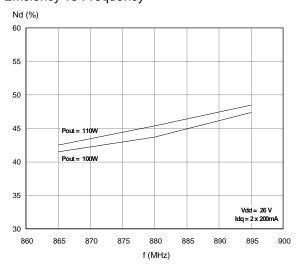
Symbol	Test Conditions	Min.	Тур.	Max.	Unit
FREQ.	Frequency Range	869		894	MHz
Gain	P _{OUT} = 100 W	12.5	13		dB
P _{1dB}	Over frequency range: 869 - 894 MHz	100			W
Flatness	Over frequency range and @ Pout = 100 W			+/- 0.5	dB
Flatness	P _{OUT} from 0.1W to 100 W			1	dB
ND at P _{1dB}	P _{1dB}	40	45		%
IRTL	Input return Loss P _{OUT} from 0.1W to 100 W		-20	-15	dB
Harmonic	P _{OUT} = 100 W		-40	-30	dBc
VSWR	Load Mismatch all phases @ P _{OUT} = 100 W	10:1			
Spurious	10:1 VSWR all phases and POUT from 0.1 to 100W			-76	dBc
IMD ₃	P _{OUT} = 100 WPEP			-25	dBc

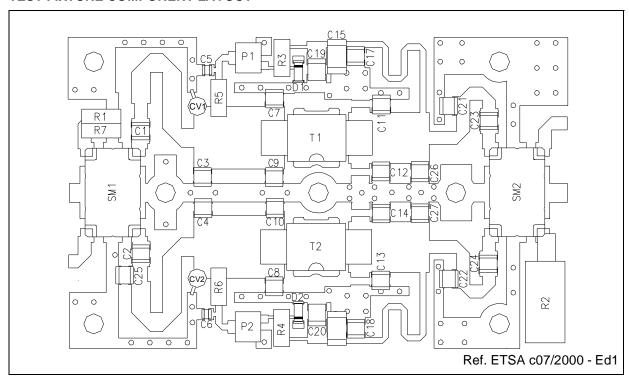

TYPICAL CDMA PERFORMANCE IS 95 / 9ch FWD (Vdd = 26V, Idq = 350mA)

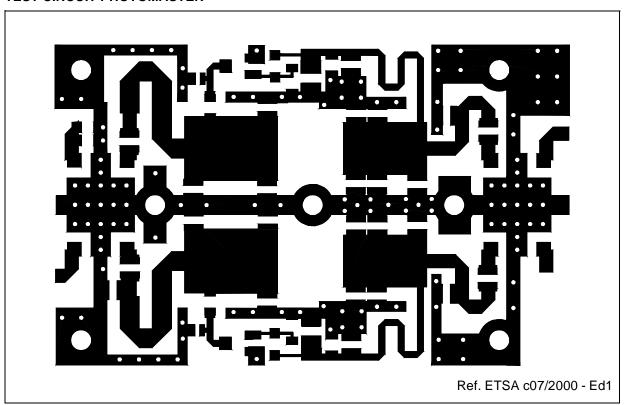
Frequency	Pout CH PWR	Pout CH PWR	ACPR -750 KHz	ACPR +750 KHz	ACPR -1.98 MHz	ACPR +1.98 MHz	l total	Nd
(MHz)	(W)	(dBm)	(dBc)	(dBc)	(dBc)	(dBc)	(A)	(%)
865	10	40.0	53.4	50.8	67.0	67.0		
880	10	40.0	54.2	51.7	68.6	68.3	2.5	15.4
895	10	40.0	53.2	51.7	69.0	69.0		
		I	1	1	I	I	l	l
865	20	43.0	45.0	45.0	64.0	64.0		
880	20	43.0	45.1	45.4	64.7	64.7	3.5	22.0
895	20	43.0	45.2	45.7	66.8	66.5		


2/6

TYPICAL PERFORMANCE


Power Gain vs Output Power


Power Gain vs Frequency


Efficiency vs Frequency

TEST FIXTURE COMPONENT LAYOUT

TEST CIRCUIT PHOTOMASTER

47/

TEST CIRCUIT COMPONENT PART LIST

COMPONENT	DESCRIPTION
T1, T2	PD57060S TRANSISTOR
C1, C2, C23, C24	47pF - 500V CERAMIC CHIP CAPACITOR
C3, C4, C12, C14	6.8pF - 500V CERAMIC CHIP CAPACITOR
C5, C6, C17, C18	100pF - 500V CERAMIC CHIP CAPACITOR
C7, C8, C9, C10, C11, C13	10pF - 500V CERAMIC CHIP CAPACITOR
C15, C16	100nF - 63V CERAMIC CHIP CAPACITOR
C19, C20	1μF / 35V ELECTROLYTIC CAPACITOR
C26, C27	3.3pF - 500V CERAMIC CHIP CAPACITOR
C21, C22	4.7pF - 500V CERAMIC CHIP CAPACITOR
C25	0.5pF - 500V CERAMIC CHIP CAPACITOR
CV1, CV2	ADJUSTABLE CAPACITOR 0.6 - 4.5pF / 500V
P1, P2	10K Ohms MULTITURN POTENTIOMETER
R1,R7	100 Ohms 1/4W 1206 SMD CHIP RESISTOR
R2	50 Ohms 30W - 4GHz LOAD
R3, R4	4.7K Ohms 1/4W 1206 SMD CHIP RESISTOR
R5, R6	10K Ohms 1/4W 1206 SMD CHIP RESISTOR
D1, D2	ZENER DIODE 5V - 500 mW SOD80
SM1, SM2	90° SMD HYBRID COUPLER ANAREN Xinger 1304-3
BOARD	METCLAD MX3-30-C1/10C THK 0.762 mm Cu 35μ
SUBSTRATE	TEFLON-GLASS Er = 2.55
BACK SIDE	COPPER FLANGE 2 mm THICKNESS
CERAMIC CHIP CAPACITORS	ATC100B or EQUIVALENT

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is registered trademark of STMicroelectronics ® 2002 STMicroelectronics - All Rights Reserved

All other names are the property of their respective owners.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

http://www.st.com

47/